
Concurrency in UML Version 2.6 Page 1

Concurrency in UML

Filip Stachecki (NobleProg Poland)

April 8, 2014 - OCUP 2 Program Library, Version 2.6

The Concept of Concurrency
Concurrency is a property of a system in which several behaviors can overlap in time – the ability to

perform two or more tasks at once. In the sequential paradigm, the next step in a process can be

performed only after the previous has completed; in a concurrent system some steps are executed in

parallel.

Firure1. Sequentialflow

Figure 2. Concurrent flow (parallel split)

UML and Concurrency
UML supports concurrency, and makes it possible to represent the concept in different kinds of

diagrams. This article covers the three most commonly used – the activity diagram, sequence

diagram, and state machine diagram. Note that the OCUP 2 Foundation level examination covers

concurrency only in the activity diagram; concurrency in sequence and state machine diagrams is

covered at the Intermediate and Advanced levels.

Activity diagram

In activity diagrams, concurrent execution can be shown implicitly or explicitly. If there are two or

more outgoing edges from an action it is considered an implicit split. Two or more incoming edges

signify an implicit join.

Concurrency in UML Version 2.6 Page 2

Figure 3. Implicit concurrency

The action at an implicit join will not execute until at least one token is offered on every incoming

control flow. When the action begins execution, it will consume all tokens offered on all incoming

control flows.

Concurrent execution can also be drawn explicitly using fork and join nodes:

Figure 4. Explicit concurrency using fork and join nodes

Sequence diagram

Concurrency can be shown in a sequence diagram using a combined fragment with the par operator

or using a coregion area. A coregion can be used if the exact order of event occurrences on one

lifeline is irrelevant or unknown. Coregion is shorthand for parallel combined fragment within a single

lifeline.

Figure 5. Parallel combined fragment covering one lifeline

Concurrency in UML Version 2.6 Page 3

Figure 6.Coregion

Figures 5 and 6 describe exactly the same situation where the order of event occurrences on the first

lifeline (a) is not significant, but the sequence on the second lifeline (b) is fixed and cannot be

changed.

A combined fragment with the par operator denotes parallel execution of operands. The order of

message occurrences of the different operands can be interleaved in any way as long as the ordering

imposed by each operand is preserved:

Figure 7. Parallel combined fragment with two operands

In Figure 7, while m3 must be sent before m4, and m5 must be received before m6 is sent, the

parallel operator indicates that the messages of the two operands may be interleaved. This allows

each lifeline to see six possible orders of the message-send/message-arrive events. (It is left as an

exercise for the reader to list and count them). In addition, because the messages may be

transmitted at different speeds, the order seen by lifeline c is independent of the order seen by

lifeline d.

Concurrency in UML Version 2.6 Page 4

State machine diagram

Concurrency on a state machine diagram can be expressed by an orthogonal state (a composite state

with multiple regions). If an entering transition terminates on the edge of the orthogonal state, then

all of its regions are entered.

When exiting from an orthogonal state, each of its regions is exited.

Figure 8. Orthogonal state

Concurrency can be shown explicitly using fork and join pseudostates. A fork is represented by a bar

with one or more outgoing arrows terminating on orthogonal regions (i.e. states in different regions);

a join merges one or more transitions.

Figure 9. Fork and Join Pseudostates

