

RESEARCH REPORT

Model Driven Development for J2EE
Utilizing a Model Driven Architecture
(MDA) Approach
Maintainability Analysis

http://www.MiddlewareRESEARCH.com

The Middleware Company
Research Team
January 2004

research@middleware-company.com

Page 2 of 25

MDA Maintainability Analysis Report
Copyright © 2004 The Middleware Company

1 DISCLOSURES

1.1 Code of Conduct

The Middleware Company offers the world’s leading knowledge network for middleware
professionals. The Middleware Company operates communities, sells consulting and conducts
research. As a research organization, The Middleware Company is dedicated to producing
independent intelligence about techniques, technologies, products and practices in the
middleware industry. Our goal is to provide practical information to aid technical decision
making.

• Our research is credible. We publish only what we believe and can stand behind.

• Our research is honest. To the greatest extent allowable by law we publish the
parameters, methodology and artifacts of a research endeavor. Where the research
adheres to a specification, we publish that specification. Where the research produces
source code, we publish the code for inspection. Where it produces quantitative
results, we fully explain how they were produced and calculated.

• Our research is community-based. Where possible, we engage the community and
relevant experts for participation, feedback, and validation.

If the research is sponsored, we give the sponsor the opportunity to prevent publication if they
deem that publishing the results would harm them. This policy allows us to preserve our
research integrity, and simultaneously creates incentives for organizations to sponsor creative
experiments as opposed to scenarios they can “win.”

This Code of Conduct applies to all research conducted and authored by The Middleware
Company, and is reproduced in all our research reports. It does not apply to research products
conducted by other organizations that we may publish or mention because we consider them of
interest to the community.

1.2 Disclosure

This study was commissioned by Compuware.

The Middleware Company has in the past done other business with Compuware.

Moreover, The Middleware Company is an independently operating but wholly owned
subsidiary of VERITAS Software (www.veritas.com, NASDAQ:VRTS). VERITAS and
Compuware have a number of business relationships in certain technology areas, and compete
directly against each other in other technology areas.

Compuware commissioned The Middleware Company to perform this study on the expectation
that we would remain vendor-neutral and therefore unbiased in the outcome. The Middleware
Company stands behind the results of this study and pledges its impartiality in conducting this
study.

1.3 Why are we doing this study? What is our “agenda”?

We are compelled to answer questions such as this one, due to controversy that sponsored
studies occasionally create.

First, what our agenda is not: It is not to demonstrate that a particular company, product,
technology, or approach is “better” than others.

Simple words such as “better” or “faster” are gross and ultimately useless generalizations. Life,
especially when it involves critical enterprise applications, is more complicated. We do our best

Page 3 of 25

MDA Maintainability Analysis Report
Copyright © 2004 The Middleware Company

to openly discuss the meaning (or lack of meaning) of our results and go to great lengths to
point out the several cases in which the result cannot and should not be generalized.

Our agenda is to provide useful, reliable and profitable research and consulting services to our
clients and to the community at large.

To help our clients in the future, we believe we need to be experienced in and be proficient in a
number of platforms, tools, and technologies. We conduct serious experiments such as this
one because they are great learning experiences, and because we feel that every technology
consulting firm should conduct some learning experiments to provide their clients with the best
value.

If we go one step further and ask technology vendors to sponsor the studies (with both
expertise and expenses), if we involve the community and known experts, and if we document
and disclose what we’re doing, then we can:

• Lower our cost of doing these studies
• Do bigger studies
• Do more studies
• Make sure we don’t do anything silly in these studies and reach the wrong conclusions
• Make the studies learning experiences for the entire community (not just us)

1.4 Does “sponsored research” always produce results favorable to the
sponsor?

No.

Our arrangement with sponsors is that we will write only what we believe, and only what we can
stand behind, but we allow them the option to prevent us from publishing the report if they feel it
would result in harmful publicity. We refuse to be influenced by the sponsor in the writing of
this report. Sponsorship fees are not contingent upon the results. We make these constraints
clear to sponsors up front and urge them to consider the constraints carefully before they
commission us to perform a study.

Page 4 of 25

MDA Maintainability Analysis Report
Copyright © 2004 The Middleware Company

2 TABLE OF CONTENTS

1 DISCLOSURES...2
1.1 Code of Conduct..2
1.2 Disclosure...2
1.3 Why are we doing this study? What is our “agenda”?.........................2
1.4 Does “sponsored research” always produce results favorable to the
sponsor? ..3

2 TABLE OF CONTENTS...4
3 EXECUTIVE SUMMARY...6
4 INTRODUCTION..6

4.1 What is Model-Driven Architecture?...6
4.1.1 Model-Driven Development ...6
4.1.2 What is MDA? ..7
4.1.3 Where does MDA Originate?...7

4.2 What are the Stated Benefits of MDA? ..8
4.3 MDA in Detail..8
4.4 OptimalJ and MDA...9

5 STUDY DESCRIPTION...9
5.1 About the specification...9
5.2 Choice of application...10
5.3 Specific Enhancements to PetStore..11

5.3.1 Pet Maturation.. 12
5.3.2 Shipping Costs ... 12
5.3.3 Supplier Bids for New Inventory ... 12
5.3.4 Amazon Web Service.. 12
5.3.5 Shipment Tracking System Integration ... 13

5.4 Overview of the Rules...13
5.5 Overview of Testing Process ...14
5.6 Overview of the Teams..14
5.7 Overview of Project Schedule and Project Management Approach .14

6 STUDY RESULTS ...15
6.1 Architectural analysis ...15
6.2 Qualitative results..16

6.2.1 Traditional Team... 16
6.2.1.1 Traditional Team – Pet Maturation... 16
6.2.1.2 Traditional Team – Shipping Costs ... 17
6.2.1.3 Traditional Team – Supplier Bids .. 18
6.2.1.4 Traditional Te am – Amazon Books.. 18
6.2.1.5 Traditional Team – Legacy Integration.. 18

6.2.2 MDA Team ... 19
6.2.2.1 MDA Team – Setup.. 19
6.2.2.2 MDA Team – Pet Maturation.. 19
6.2.2.3 MDA Team – Shipping Costs... 20
6.2.2.4 MDA Team – Supplier Bids.. 21
6.2.2.5 MDA Team – Amazon Books... 21
6.2.2.6 MDA Team – Legacy Integration.. 21

6.3 Quantitative results ...22
6.3.1 Pet Maturation.. 22
6.3.2 Shipping Costs ... 22
6.3.3 Supplier Bids .. 23

Page 5 of 25

MDA Maintainability Analysis Report
Copyright © 2004 The Middleware Company

6.3.4 Amazon Web Services .. 23
6.3.5 Legacy Integration .. 23

6.4 Factors that Affected Productivity...23
7 CONCLUSION...24

Page 6 of 25

MDA Maintainability Analysis Report
Copyright © 2004 The Middleware Company

3 EXECUTIVE SUMMARY

In the spring of 2003 The Middleware Company performed and published a report on research
testing whether development tools taking a Model-Driven Architecture (MDA) approach
increased the productivity of developers building a new J2EE application. That report found
that MDA increased productivity 35% over a traditional, code-centric approach.

This study extends the examination to the realm of application maintenance. Two teams
performed a set of typical and diverse enhancements to an existing application. One used an
MDA-based tool, while the other team used a code-centric approach with a traditional
enterprise-caliber integrated development environment (IDE).

The team taking the MDA approach completed the five enhancements 37% faster than the
traditional team, in 165 hours versus 260. These results are well in line with those of the first
study.

As a result of this study, The Middleware Company reinforces its recommendation that
development shops interested in increasing their productivity evaluate MDA-based
development tools for use in their projects.

4 INTRODUCTION

This report compares the productivity of two development teams maintaining and upgrading an
identical J2EE application. One team used a Model-Driven Architecture (MDA) approach to
J2EE development. The other team used a traditional, code-centric development approach.
The original application was a version of the familiar J2EE PetStore application, defined by a
rigorous functional specification. The upgrades, which represented a range of typical
enhancements, were defined by another rigorous specification. Both specs were reviewed by
industry experts.

We begin with an overview of MDA, its origins, its specifics and the benefits it promises. Next
we describe the study itself: the specification and application used, the nature of the two teams
and the terms of the study. Then we examine the results of our study – the structure and
quality of the code produced by both teams, the qualitative experience of the developers, and
of course the quantitative results. Finally, we drill deeper to see where the differences lie and
what explains them.

4.1 What is Model-Driven Architecture?

4.1.1 Model-Driven Development

To understand MDA, it helps to first look at the broader concept of Model-driven development
(MDD)

A model is simply an abstract representation of some part of an application or system. We may
model something as specific as the classes that make up the user interface, something as
broad as the distribution of data and functionality across the entire network, or anything in
between. And we can build models with any degree of sophistication we choose: from hand-
drawn boxes on a whiteboard to complex UML diagrams produced by a modeling tool.

While models have long figured into J2EE development, too often they remain strangely
disconnected from the implementation. The model serves as a guide or blueprint, but
developers still have to write all the implementation code by hand. As the application evolves,
developers often find adherence to the model confining rather than useful. Maintaining the
model becomes a chore rather than a help.

Page 7 of 25

MDA Maintainability Analysis Report
Copyright © 2004 The Middleware Company

MDD is a paradigm that connects the model more closely to the implementation. With MDD,
the model not only encapsulates the application design, but is used to generate the
implementation code. MDD typically consists of four steps:

1. Create a class model. This includes defining data entities and business operations.
2. Generate Java code from the model. The tool produces code for any J2EE constructs

– servlets, JSPs, EJBs, SOAP objects – that you specify.
3. Supply implementation code for the defined operations. Typically the tool knows how

to implement CRUD1 operations. But custom operations such as placeOrder() or
validateCreditCard() would require custom code from the developer. (Note that this
step may come before step 2, depending on the tool and the modeling approach.)

4. Package the application for deployment to a particular platform.

4.1.2 What is MDA?

Despite generating code from the model, basic model-driven tools may still require developers
to manually write a great deal of infrastructure code to complete the application. MDA takes
model-driven development two steps further by (1) addressing the high-level structure
(architecture) of the application and (2) doing so in a standardized way. In this way MDA tools
can speed the development process significantly.

Several characteristics of MDA tools make this possible:

• First, they raise the model’s abstraction to a higher level. A class in the top level model
simply represents a domain entity, abstracted from how that entity will be used in the
application. The entity might be implemented as a business object, a message, a web
service, a JSP or all of these, but those choices are made independent of the basic
model.

• Second, they generate infrastructure code, including non-Java artifacts such as
deployment descriptors. As a result they produce a much higher portion of the
application’s total code than do basic model-driven tools, allowing the developer to focus
on defining the application components.

• Finally, they generate code with an architecture based on best practices. The architect
or developer may choose among alternative pre-built architectures, as well as customize
them or define new ones.

4.1.3 Where does MDA Originate?

The Object Management Group (OMG) created the Model-Driven Architecture. OMG is an
industry standards body represented by several hundred member organizations drawn from
both the IT user and vendor communities. OMG is the home of several widely used standards,
including Unified Modeling Language (UML) and the Common Object Request Broker
Architecture (CORBA). Because it was developed using OMG's open process, MDA is a
vendor-neutral approach; any vendor can create an MDA tool that assists with the MDA
process. For more information about MDA, please refer to OMG's white papers on the subject,
available from http://www.omg.org.

1 Create, retrieve, update, delete

Page 8 of 25

MDA Maintainability Analysis Report
Copyright © 2004 The Middleware Company

4.2 What are the Stated Benefits of MDA?

Model-Driven Architecture claims to offer the following benefits over a traditional, code-centric
development approach:

Faster development time. Code generation can save you the “grunt work” required to hand-
write the same files over and over again. With the traditional approach, an entity bean, for
example, requires 3 or 4 Java classes and one or more XML files. A clever MDA tool can
automate most of this.

Architectural advantages. Modeling at the domain level can force you to actually think about
the architecture and object model behind your system, rather than letting you simply dive into
coding (which many developers still do). It’s well accepted that greater attention to modeling up
front reduces architectural flaws down the line.

Improved code consistency and maintainability. Most organizations have problems
keeping code consistent in their projects. Some developers use well-accepted design patterns,
while others do not. Using an MDA tool to generate your code with a consistent algorithm,
rather than writing it by hand, can force all developers to use the same underlying design
patterns, since the code is generated in the same way each time. This can become a huge
advantage from the maintenance perspective. Furthermore, developers may be more likely to
understand each other’s code more easily, given that they’re all speaking the same design
language.

Increased portability across architectures, middleware vendors and platforms. Models,
by definition, abstract to one degree or another from the code they generate. An MDA tool
could be configured to produce a body of code with a particular configuration and
characteristics. For example:

• Data entities in the model could generate entity beans, JDO classes, or plain old Java
objects (POJOs) with JDBC.

• Screen designs in the model could generate JSPs, explicit servlets, or a Swing GUI.
• Deployment settings in the model could generate descriptors for any specified application

server, be it WebLogic, WebSphere, JBoss or another.

Additionally, a model could even abstract beyond J2EE itself, giving you the ability to generate
J2EE, .NET, or CORBA code from the same model.

This report focuses on evaluating the benefit of faster development time as it pertains to
application maintenance. It does not address the other potential advantages of MDA.

4.3 MDA in Detail

MDA defines three layers of models and the relationships among them.

• The Platform-Independent Model (PIM) is the highest and most abstract model. It
defines the entities and operations of the application domain in a highly abstract way.

• The Platform-Specific Model (PSM) is the next level down. This model has the J2EE-
specific metadata for the various layers of an application: database, EJB, web and
integration. Here, for example, one might define custom finder methods for entity EJBs.

• The code model has the actual generated source code: Java classes, JavaServer Pages
and deployment descriptors.

The generation of PSM and code model is based on templates or patterns:

• Technology patterns translate the PIM into the PSM. This version of OptimalJ exposes
the technology patterns to tailoring.

Page 9 of 25

MDA Maintainability Analysis Report
Copyright © 2004 The Middleware Company

• Implementation patterns translate the PSM into the code model; in other words, they
generate the source code. This translation will be based on established J2EE design
patterns, and the template should be editable.

4.4 OptimalJ and MDA

In this study, the MDA team used Compuware’s OptimalJ product (Architecture Edition v3.0), a
full-featured implementation of the MDA standard. It presents three layers of models:

• The domain model, or PIM. This model breaks down into two areas: classes (entities)
and services (processes).

• The application model, or PSM. This model breaks down to the various system tiers:
dbms, ejb, web, integration.

• The code model.

OptimalJ exposes the translation templates to editing:

• Exposure of the technology patterns that translate the domain model into the application
model is new to this version of OptimalJ.

• Exposure of the implementation patterns that translate the application model into the
code model existed in prior versions. But out of the box, OptimalJ’s implementation
patterns use many established J2EE design patterns, such as model-view-controller
(MVC), business façade and data transfer object (DTO).

In addition to the expected code, OptimalJ also generates a default application from the
application model. This is a complete web application with links and pages to invoke the CRUD
operations for every domain class and the custom operations for every domain service. As we
will describe below, the MDA team found this default application very useful for testing
purposes.

5 STUDY DESCRIPTION

This study, commissioned by Compuware Corporation, follows on a previous study we
performed for them2. Both studies measured the productivity benefits of using an MDA
approach to J2EE development over a traditional, code-centric approach. While the first study
addressed development of a new J2EE application, this one focuses on maintaining and
enhancing an existing application.

As we will explain below, this study follows on the previous one in several respects: It uses the
same methodology. Not only do the participants work from a formal application specification,
but that specification builds on the one used in the previous round. The application completed
in the previous study is the starting application for this one. The IDEs used by the two teams
are newer versions of the same two used in the previous study. And there is continuity among
the team members from last round to this.

5.1 About the specification

The functional specification used by both teams for this productivity study is The Middleware
Company Maintainability Specification. It builds upon the specification used in the previous
study3, which described a complete application. The Maintainability Specification spells out the
requirements for a series of specific enhancements to the baseline application. Those

2 That study, Model Driven Development for J2EE Utilizing a Model Driven Architecture (MDA) Approach -- Productivity Analysis , can be found at

http://www.middlewareresearch.com.
3 The Middleware Company Application Server Platform Baseline Specification

Page 10 of 25

MDA Maintainability Analysis Report
Copyright © 2004 The Middleware Company

enhancements, described in detail below, cover a range of typical maintenance tasks, from
adding user features to augmenting business logic to integrating with legacy systems and web
services.

The Middleware Company created the specification with the help of a distinguished panel of
experts. The expert group includes:

Rob Castaneda (Author; CEO, CustomWare Asia Pacific), Rod Johnson (Author, Expert 1-on-
1: J2EE Design & Development), Salil Deshpande (CEO, The Middleware Company) , William
Edwards (Practice Director and Senior Enterprise Architect, The Middleware Company), Tom
Murphy (J2EE/.NET Analyst, META Group), Cameron Purdy (CEO, Tangosol), Bola Rotibi
(Senior Analyst, Ovum), Andrew Watson (Vice President & Technical Director, Object
Management Group)

You can download the specification from our web site, http://www.middlewareresearch.com.

5.2 Choice of application

As in the previous round, the basis for the specification used in this study is the well known
PetStore application4, a simple web-based J2EE e-commerce application. The baseline
PetStore has the following functionality:

• User management and security. Users can sign into the system and manage their
account.

• A Product catalog. Users can brose a catalog of pets on the web site (such as birds, fish
or reptiles).

We believe we have addressed these challenges in the following ways:

• We have a specification for the PetStore, rather than merely an implementation.
• The “modern” PetStore implementations, which conform to our base specification, have

departed substantially from sun’s original implementation. Practically, what the
specification has most in common with Sun’s original PetStore is that the application
domain involves purchasing pets.

• Neither the original nor the follow-on specification mandates any particular architectural
approach, giving teams the freedom to architect their applications as they see fit.

• Shopping cart functionality. Users can add pets to their shopping cart and manage their
shopping cart in the usual ways.

• Order functionality. Users can place an order for the contents of their shopping carts.
• Web services. Users can query orders via a web service. We extended the PetStore to

include this, since web services are an emerging area of interest.

From a technology perspective, the PetStore includes the following:

• A thin client HTML UI layer
• JSPs to generate HTML on the server
• JDBC SQL-based data access
• EJB middle tier components
• Ad-hoc database searching
• Database transactions
• Data caching

4 As noted in the past, we recognize that “PetStore” evokes mixed emotions in some, because Sun Microsystems never intended the original

PetStore sample application to be used as the basis of a study. After all, PetStore was originally merely a sample application for J2EE, not a
fully blown specification. Furthermore, the original PetStore did not represent a well-architectured application.

Page 11 of 25

MDA Maintainability Analysis Report
Copyright © 2004 The Middleware Company

• User/Web session management
• Web Services
• Forms-based authentication

5.3 Specific Enhancements to PetStore

Our Maintainability Specification describes requirements for fi ve major enhancements to the
baseline application. Each focuses on a different combination of additions or changes, from
new user features to business logic changes to integration with other applications.

The teams in this study implemented all of these enhancements:

1. Tracking pet maturation
2. Calculating shipping costs
3. Soliciting supplier bids for new inventory
4. Integrating with Amazon.com via its web service
5. Integrating with a mainframe application to track shipments

The requirements for each enhancement are summarized in this table and described further in
the following sections. For full details, see the Maintainability specification.

 Changes to:
Enhancement User

Interface
Business Logic Database

Schema
Integration

(1) Pet
Maturation

Significant
changes to
several pages

Calculate pet age,
discount factor, price.
Handle individual pet
instances in cart.

Extensive:
new tables,
fields,
relationships

None

(2) Shipping
Costs

New page
showing
shipping
options;
changes to
other pages

Calculate cost for
each shipping option

1 new table,
several new
fields

Use web
service to
get distance

(3) Supplier
Bids for New
Inventory

None; need
simple JMS
consumer to
monitor
messages

Send bid solicitation
JMS message when
inventory falls

1 new table
Use JMS to
solicit and
receive bids

(4) Amazon
Web Service

New page
showing
books with
links to
Amazon

Send query for books
on pets to Amazon,
get and process
results

None

Use web
service API
to
Amazon.co
m

(5) Shipment
Tracking
System
Integration

New link on
home; new
page showing
tracking info

Connect to CICS
app, send tracking
query, process
results

1 new field

Use
mainframe
(CICS) app
via JCA

Page 12 of 25

MDA Maintainability Analysis Report
Copyright © 2004 The Middleware Company

5.3.1 Pet Maturation

The baseline specification treats all pets in a specific item grouping (such as Labrador puppy)
as identical. A customer could buy any desired number by manually entering the quantity in the
shopping cart.

The new specification recognizes that a pet’s value changes as it ages. Each individual animal
(“pet instance”) is displayed, priced and selected separately. Pet pricing is calculated from a
base price for the item and a discount based on the animal’s age. For each category of pet
(dog, cat, etc.) there is a series of “life stages”, age categories with associated discount factors.
When a pet is purchased, its current age determines what life stage category it belongs to and
thus by how much the price is discounted.

This enhancement requires substantial additions to the database schema to account for
individual pet instances, manage life stage categories and track pet instances in the shopping
cart. It requires additions to the business logic to calculate a pet’s age and price discount as
the pet gets older.

It also requires changes to the shopping cart portion of the UI, to display and manipulate
individual pet instances in a cart line item. For example, if a customer buys four Labrador
puppies from the same item grouping with the same base price, they are listed in the cart as
one line item with a quantity of four. That line item includes a drop-down list containing the IDs
of the individual puppies. The Remove Item button for that line item then applies only to the
selected puppy, not to the entire line item.

5.3.2 Shipping Costs

The baseline application does not calculate shipping costs as part of a purchase. This
enhancement defines a formula for shipping charges based on shipment weight and distance
shipped. After completing shopping, the customer sees a table of shipping options with the
shipping cost calculated for each. The customer picks the desired option, after which the
shipping cost is added to the purchase prices of the pets.

This enhancement requires some changes to the database schema, business logic and user
interface. It also requires integration with a web service used to calculate the distance between
two zip codes.

5.3.3 Supplier Bids for New Inventory

The baseline specification includes a suppliers table in the database but does not use it in the
application. Nor does it require any action when a pet is sold out. This enhancement requires
that when inventory of an item falls to a critical level, the application sends to suppliers of that
item a JMS message soliciting bids for new inventory.

This enhancement requires changes to the database schema to indicate what suppliers sell
what products and to track purchase history. There are no changes to the UI. The bulk of the
work involves the business logic and JMS mechanics of sending messages. Note that, for
purposes of this study, the specification does not require implementation of logic to receive and
process a supplier’s bid. For testing purposes the two teams set up a simple JMS consumer to
receive and display bid solicitation messages.

5.3.4 Amazon Web Service

This enhancement adds a completely new feature to the original application: When the user
finishes shopping and proceeds to checkout, the application displays a selection of books from
Amazon.com related to the categories of pets in the shopping cart. Clicking on the link for one
of the books takes the user to the main page at Amazon for that book.

Page 13 of 25

MDA Maintainability Analysis Report
Copyright © 2004 The Middleware Company

This enhancement requires use of Amazon’s published web service API to retrieve book
information. It does not require any further interaction with the web service beyond a simple
book query. Since the application does not store book information, no changes to the database
are necessary. Some business logic is required to retrieve a selection5 of books for each pet
category represented in the shopping cart, combine them into a single list and eliminate
duplicates. And the spec requires a new web page to display the selected books with links to
Amazon’s web site.

5.3.5 Shipment Tracking System Integration

This enhancement adds legacy integration to PetStore. It uses a CICS application that
receives a shipment tracking number and returns a history for that shipment.

This enhancement requires connection to the mainframe application via the Java Connector
Architecture (JCA). The logic to send a query and process the results was the most
challenging aspect of this enhancement. Other changes are fairly simple: adding a new link to
the home page and creating a new page for the query and results.

Both teams received the JCA adapter and appropriate details about the target application’s
API, including a COBOL file containing the record structure. However this enhancement
presented a special circumstance: OptimalJ has the capability to parse a COBOL file and
generate Java stub code, much the way it can generate web service stub code from a WSDL
document. The traditional team’s IDE has no such wizard. This capability, while powerful, is
not inherent to the MDA approach. Therefore, to keep the study’s focus on the development
approaches rather than on the tools, the traditional team was given the same stub code.

5.4 Overview of the Rules

The rules for this study were much like those of the first MDA study. The Maintainability
Specification follows the example of the Baseline Specification in spelling out rules for
enhancing the application. Where appropriate, it describes what data can be cached, database
exclusivity rules, requirements for forms-based authentication and session state rules. It also
describes in great detail the required experience of using the application.

As before, the two teams were required to use the same database schema as spelled out in the
spec, although not the same database engine. Each was given DDL for the chosen engine that
modified the original schema and loaded sample data. The DDL was organized incrementally
by enhancement so that the teams could complete each one independently of those down the
road.

Other rules for this study remained the same as in the previous one to factor out extraneous
aspects of the comparison and focus it on the productivity of J2EE coding:

• The spec did not mandate the implementation details of the J2EE code, including choice
of J2EE implementation patterns – those decisions were left up to each team. What
mattered was that the two resulting applications behave similarly.

• Each team was given their choice of J2EE-compliant application server, so that forcing
the use of an unfamiliar one would not hinder their productivity. (As before, we refrain
from mentioning the specific application servers used.)

• The teams chose their own tools for source control. Both teams used the same full-
featured source control system.

• The teams also chose their own tools for web services and logging. Both teams used the
same open source tools, namely Apache Axis for web services and Apache Log4J for
logging.

5 It proves impractical to display all books for a pet category. For example, a query for books with keyword “CATS” returns over 75,000 titles,

including such favorites as Cat’s Cradle, Old Possum's Book of Practical Cats and the ever popular The Cat in the Hat (not to mention the
lesser known but equally gripping Cattus Petasatus: The Cat in the Hat in Latin).

Page 14 of 25

MDA Maintainability Analysis Report
Copyright © 2004 The Middleware Company

One key difference is that, unlike the last round, this time the teams received no HTML or
image files. Most of the UI work consisted of changes to the appearance and functionality of
existing JSPs. Any new pages were to be designed according to the spec and created from
scratch using the IDE.

5.5 Overview of Testing Process

As in the last study, each team performed unit testing prior to submitting their final code bases.
Furthermore, to ensure similar application behavior, both applications were subjected to a set
of more than 50 manual tests described in a test specification. The test scenarios measured
whether the applications performed as described in the original specification. The test
scenarios are functional in nature, in that they do not perform unit testing of code, but rather
describe a process for a tester to interact with the application using the web interface. Both
teams’ applications passed the tests.

5.6 Overview of the Teams

The team using the traditional, code-centric approach consisted of two members: one senior
J2EE architect from The Middleware Company (who served as team leader and held the same
position in the previous study) and one experienced J2EE programmer. Both team members
had significant experience with J2EE development on a variety of application servers.

The MDA team consisted of two members, one each provided by Compuware and The
Middleware Company (TMC). The Compuware-provided team member is a technical architect
experienced with OptimalJ. He served as team leader. The TMC team member is an
experienced J2EE developer with a solid foundation in architecture as well as development.
Both team members participated on the MDA team in the prior study.

For further continuity with the previous study, the teams used newer versions of the same IDEs
used in the previous round: OptimalJ 3.0 for the MDA team; a market-leading, full-featured
J2EE development environment for the traditional team.

And, as before, we made sure that the teams had roughly similar skill-sets regarding J2EE
development experience generally and the specific development tool they would use. All four
team members had previous experience with the IDE they would use. Three of the members,
having participated in the prior study, were already familiar with the existing body of PetStore
code; the fourth took time to get to know it before starting the study.

5.7 Overview of Project Schedule and Project Management Approach

To keep an accurate log of the experiences of each team, we held weekly conference calls
separately with each team. During these calls we took copious notes about the teams’
experiences. The teams would answer the following questions:

• What did your team work on?
• What was good from the productivity perspective?
• What was challenging from the productivity perspective?

Summaries of these notes are presented in the next section of this report.

Page 15 of 25

MDA Maintainability Analysis Report
Copyright © 2004 The Middleware Company

6 STUDY RESULTS

In this section, we discuss the results of the study. The results are organized into the following
sections:

The Architectural Analysis section examines the architecture and J2EE patterns used by
each team.

The Qualitative Results section summarizes each team’s qualitative thoughts on the
development approach they chose – the issues each team encountered and how they resolved
those issues.

The Quantitative Results section presents and discusses the productivity result numbers of
each team.

Finally, the section Factors that Affected Productivity summarizes the reasons for the
difference in productivity.

6.1 Architectural analysis

Since the development work performed in this study built on that of the original one, many of
the critical design choices were already in place. As the previous report describes in detail,
both teams used J2EE design patterns extensively in their original work. On the MDA side,
these patterns resulted from the implementation templates that translate the Platform-Specific
Model (PSM) into code. The MDA tool automatically generated high-quality pattern code from
the model. On the traditional side, the patterns stemmed from deliberate design choices and
(for the most part) explicit coding. In fact, the previous study found that the traditional team
actually used several more patterns than the MDA team.

Some of the design patterns used by both sides in the original application include:

• Session Façade
• Business Delegate
• Data Transfer Object (DTO)
• Model-View-Controller (MVC)

Additionally, the traditional team used these patterns in its original coding:

• Service Locator
• Data Access Objects (DAO)
• JDBC for Reading

In the current round, both teams expanded their use of patterns. On the MDA side, the newer
version of OptimalJ incorporated patterns that the previous study’s version did not, particularly
Service Locator and DAO. Since these additions resulted from changes to the implementation
patterns, they stem from the MDA approach rather than this particular MDA tool. In fact the
MDA team in the previous round could have added those patterns had they edited the
templates themselves. On the other side, the traditional team used the EJB Command pattern
in the legacy integration enhancement. All in all, in this round both teams used approximately
the same set of design patterns.

In terms of overall design quality, the code produced this time compared favorably with that of
the previous round. For new work that extended previous functionality, the two teams adhered
to the same basic designs. The MDA models generated new code that was architecturally
equivalent to the existing code. And the traditional team continued their deliberate use of
appropriate design patterns.

Page 16 of 25

MDA Maintainability Analysis Report
Copyright © 2004 The Middleware Company

In terms of work that was substantially new – such as JMS, web service or legacy integration –
the MDA approach continued to help keep architectural quality high. Two examples:

• When a web service or JCA integration was added to the model, the model generated
not only the basic client stub classes, but also a stateless session bean and business
façade wrapper to the stub.

• For writing a JMS producer, the MDA approach made it very easy to define a message
data structure and tie it to the message-producing component, thus minimizing the
amount of custom business logic actually required.

On the traditional side, the team had to consciously design and build the wrapper code for the
various integration components. They did so with a level of quality comparable to that of the
original application.

6.2 Qualitative results

In this section, we’ll review qualitative thoughts from both teams, summarized directly from their
weekly status updates.

6.2.1 Traditional Team

6.2.1.1 Traditional Team – Pet Maturation

After initially discussing the changes asked for in the provided specification, the traditional team
adopted a pair-programming approach as they began to refactor the existing code base. Pair
programming proved beneficial on many occasions as one team member would offer advice or
explanation while the other coded. The team spent several hours going over the existing
solution and deciding how best to implement the changes for Enhancement One (Pet
Maturation). Pair programming helped set a level of understanding of the existing code. It
provided a particular benefit with respect to source code control, as there was never a moment
when the team’s code fell out of sync.

After considering the use of CMP entity beans, the team decided to continue using the Data
Access Object (DAO) and JDBC for Reading patterns for displaying information. An initial
slowdown occurred while the team worked on the SQL query necessary to load the new item
instances. The IDE did not help during this task.

Once they worked out the query, the team spent time chasing down references to item objects
in the original code. The IDE was effective in quickly finding all of these references and helped
clarify the depth and breadth of the impact the Pet Maturation enhancement would make on the
existing code.

In addressing the new requirements for displaying individual pet instances, the team
investigated using inheritance to solve the problem of loading two similar kinds of data in
response to user’s requests. This course of action proved faulty; after a day of frustrating work,
they abandoned it for what seemed a simpler, faster solution. The team decided to leave
existing working code in place and write additional code to accommodate the retrieval and
display of the new item-instances.

The team spent a day ripping out some of the previous changes and developing the new code.
They adjusted the entity beans to accommodate the new schema and modified the
ShoppingCart session (as well as the business interfaces it implemented) to accommodate the
additional methods now required.

The next morning found the team working on the OrderManagerSession and attempting
several new deployments and tests of the new methods. They spent the afternoon writing
helper methods to manipulate dates, discussing the web-tier code changes and particularly
focusing on the productDetails page and the changes required there.

Page 17 of 25

MDA Maintainability Analysis Report
Copyright © 2004 The Middleware Company

The team now spent most of its time making required adjustments to the web tier; they found
the chosen IDE helpful when coding the new JSPs and deploying each new version of the web
application. Initially, these deployments caused significant delays because the IDE was set to
recompile every JSP. This setting was later adjusted, speeding the deployment time
considerably.

Day Five started with a morning meeting discussing some of the memory requirements of the
IDE and comparing notes regarding what behavior should be expected from it. Much of that
day was then spent adjusting some awkward code left over from the original code base and
fixing some newly written array manipulation code that was failing during tests. The new code
was then tested.

As work progressed into the second week, the team focused on the web tier and struggled with
some user-interface aspects of Pet Maturation. Complex manipulation of collections and code
changes necessary to display item instances held within them as specified proved a good
challenge to the team.

Their IDE was only nominally helpful in resolving the problems that came up. It assisted them
when they found they had to back-track and refactor previous attempts and helped by offering a
preview of the look and feel of the user-interface they produced using JSPs. There were,
however, almost no wizards or shortcuts available that actually sped up the team as they
sought to complete these chores. One exception was the ability to save an existing JSP with a
new name and then drag and drop it to a new file location from within the IDE.

One task in particular stymied the team: The removal of an individual pet instance from a
shopping cart line-item made up of several instances. The spec required the line item to have a
drop-down list of instances, from which the user would select the one to remove. The team
eventually utilized a bit of JavaScript to resolve it. Their IDE did not help in understanding the
syntax of this language, but did offer a tree-view of the various tags in the JSPs, allowing more
rapid navigation through a large page. The preview feature was not very useful when solving
this problem as, without runtime data, the JavaScript caused errors to appear in the preview.
This proved somewhat distracting.

In the second week the team found it harder to synchronize their development efforts. During
this week the team worked more independently and, as a result, had to check their
contributions in and out more often. This exposed them to further difficulties and a
disappointing lack of assistance from the IDE. After several attempts taking more than three
hours, they discovered that a file specific to the IDE and its management of EJB files had not
been included in the updates to source control. The IDE did not offer a warning, or at any time
help to resolve the resulting synch-up errors that slowed the team down. Additionally, twice
this week team members found they had to delete their local copy of the project and reload it
completely from the server to get back in synch.

The team devoted an entire day to debugging Pet Maturation; at one point a member
expressed frustration at having to deal with so many files.

6.2.1.2 Traditional Team – Shipping Costs

By the time the team began the Shipping Costs enhancement, they had become increasingly
confident of the synching process and working apart, and so became much more productive.

They created a new project to house this enhancement and, after modifying the data, benefited
from the IDE’s wizards as they refactored the existing entity beans and added a new one.
Losing a connection with source control during this process caused a minor slowdown.

A startup class implemented as a servlet for portability caused some slowdown in productivity
as the team faced an unfamiliar security error while attempting to update the status and
inventory of the stored items in the database. The team discovered that, due to the need to

Page 18 of 25

MDA Maintainability Analysis Report
Copyright © 2004 The Middleware Company

access a protected resource (a datasource) , the default initialization of a JNDI InitialContext
would not suffice. They eventually resolved the problem through programmatic use of JNDI.

A notable benefit of using the IDE was the ease with which it generated the required web
service client using Axis. As a result of this ease, the team also made some small effort to
build the stub for the Amazon web service required in Enhancement Four.

While one member moved on to the next enhancements, the other continued debugging and
refining Shipping Costs. He spent several hours on entity bean refactoring and dealing with an
error in the selected relationships between the Order and ShipmentMethod beans. While
human error was at fault initially, the team faced difficulties wherein their IDE manufactured
additional fields and forced a mapping between these in its relationship wizard. This
construction of additional fields caused great confusion and frustration as it diverted attention
away from the entity relationship to correcting what appeared to be a bug.

The original Shipment JSP was discovered to be missing functionality and an associated struts
action. It cost some time to go back and fix the problem.

6.2.1.3 Traditional Team – Supplier Bids

The third week was one of debugging and integration. The team members spent most of their
time working independently of one another, which allowed them to work on several tasks in
parallel, but also presented large challenges when merging the resultant code.

The team spent much time refactoring what proved to be naïve initial attempts at satisfying the
requirements: The JMS client had to be reworked so that it did not eat up 100% of CPU time
due to a runaway thread. The class originally responsible for sending the message was
refactored and split into a well-defined interface, its implementation, and a helper class.

6.2.1.4 Traditional Team – Amazon Books

Obtaining the pet category for the Amazon web service search proved more work than
expected as it was not previously propagated along with the order or selected items. Making it
available required modifying several files, DTOs as well as their DAO (DTOFactory) classes.

However, the team used a Java TreeSet to good effect to process the results from the Amazon
web service query (remove duplicates and sort by two fields as required by the spec).

6.2.1.5 Traditional Team – Legacy Integration

Receiving the stub classes for talking to the CICS application simplified the team’s task
enormously. Without them, the team would have had to write that code by hand; lacking
experience in COBOL programming or CICS connectivity, they undoubtedly would have found
this experience arduous, time consuming and frustrating.

One problem hindering productivity had to do with the distribution of classes for deployment.
Using a JCA adapter and accompanying RAR file encouraged the use of an EAR file for
deployment. This caused several slowdowns as the team discovered that all non-EJB classes
needed to be placed in a separate JAR file from the EJB JAR and the WAR file so that they
could be safely shared and correctly loaded by the class loader. This took considerable time to
detect as crucial and then configure, however once accomplished, the deployment of changes
was much swifter (< 20 seconds) as neither the WAR nor EJB JAR files needed to be rebuilt
for most re-deployments.

Page 19 of 25

MDA Maintainability Analysis Report
Copyright © 2004 The Middleware Company

6.2.2 MDA Team

6.2.2.1 MDA Team – Setup

The MDA team began the first week getting set up to work. This included configuring source
control properly. OptimalJ generates many different types of files, including model metadata
and IDE-specific files as well as the expected Java and JSP source. Setting up version control
to handle only those files that must be shared proved to be a critical initial task. Even though
they took great care in doing so, the team later encountered synchronization problems. A
small, seemingly isolated change to the model affected a number of other files. More than
once the team had to either back out a change or do explicit version comparisons (which,
fortunately, the source control software made relatively easy) to get back in synch.

6.2.2.2 MDA Team – Pet Maturation

Once properly set up, the team commenced the Pet Maturation enhancement. They began by
modifying the domain model to reflect the required changes to the database schema. While
most of the model changes were straightforward, the mapping between a shopping cart line
item and a pet instance posed an issue. The spec describes a one-to-many (1:N) relationship
from line item to pet instance via an intermediate join table. More precisely, it defines a 1:N
relationship from line item to the join table, then a one-to-one (1:1) from there to pet instance.
To model this situation in OptimalJ’s domain model, the team would have to choose between
two imperfect alternatives:

• Define a domain class for the join table, then model the two relationships to it exactly as
in the database.

• Model a many-to-many (N:M) relationship from line item to pet instance, letting the tool
create a table for the join. Then, if necessary, go to the DBMS tier of the application
model and point the tool to the join table already in the database.

The team chose the latter alternative for two reasons, one philosophical and one practical.
Philosophically, since the join table was present in the database only to facilitate a relationship
between two other tables, it does not stand for a real domain entity and therefore should not be
represented by a class in the domain model. Practically, this alternative would cause the tool to
generate complete code to move between line item and pet instance, reducing the amount of
navigation logic the team would have to write.

This experience demonstrated to the team that while many types of entity relationships can be
easily modeled, certain complex relationships may require workarounds.

Once the domain (platform-independent) model was updated to reflect the schema changes,
the team had to update the application (platform-specific) model, then regenerate the code. In
doing so they ran into two obstacles. The first concerned newly created relationships to pre-
existing classes; for example, the newly created PetType class has a relationship to the
preexisting Product class. The team found that OptimalJ the was not properly updating the
application model to reflect the new relationships. The culprit turned out to be a property of
certain application model elements that controls under what circumstances they are
regenerated. The property had been previously set to a value that prevented proper updating
of the application model. Using OptimalJ’s model checking utility, the team discovered the
cause of the problem. Changing the property to a less restrictive setting and trying again
solved it.

The second obstacle had to do with the new version of OptimalJ. The initial PetStore
application was created in an earlier version (2.2), then ported to this version (3.0). The new
version exposes the technology patterns for editing; it does so by adding various nodes to the
domain and application models. One such node resides under each domain service that has a
“domain view”, a particular combination domain classes that the service uses. (For example,

Page 20 of 25

MDA Maintainability Analysis Report
Copyright © 2004 The Middleware Company

the initial PetStore application had an AccountManager domain service that used a domain
view comprising an Account object and its related SignOn and Profile objects.) When a
domain view is affected because the related domain classes have changed, this new
“technology node” under the service is used to update the domain view.

The problem was that when porting PetStore to OptimalJ 3.0, these nodes were not created.
The model had one service whose domain view had to be updated to reflect changes in domain
classes. As a result, for that service the team had to delete and redefine its domain view, then
regenerate all associated code. Diagnosing and solving that problem cost several hours.

With the models updated and the code regenerated, the team tested the new class model using
OptimalJ’s default application. As described above, this is a complete web application that
exposes every CRUD or custom operation in the domain model. OptimalJ generates it
completely; it requires no coding. The default application proved extremely handy throughout
the project. Whenever a team member changed the domain class model in any way or
implemented a domain service operation, he could immediately test the change without having
to write test code. In the current case, the team tested the new domain classes by browsing,
retrieving and updating them in the default application. This guaranteed that they were
reaching the new tables in the database and that the plumbing code was working properly end
to end.

All in all, despite the complexities of the various layers of modeling, the team felt that the
schema changes and related code changes proceeded much more quickly and easily than they
would have had direct coding been necessary.

As work progressed on the Pet Maturation piece, other tasks proved easy:

• The spec required that, at application startup, all pet instances with status selected would
have their status reset to ready. MDA made it ve ry easy to create a special startup
component to invoke that logic.

• Handling pet instances by status required a custom finder for the instance entity EJB. It
took no time to define the finder in the application model, after which code regeneration
automatically updated not only the EJB code but the business façade as well. The new
finder could be easily tested in the default application.

6.2.2.3 MDA Team – Shipping Costs

Some of the issues encountered in the first enhancement reappeared here:

• Resetting the regenerate property of certain model elements so that changes to the
domain model would propagate correctly down through the application and code models.

• Synchronizing code between team members when model changes were made.

The most significant part of this enhancement proved to be the use of a web service to
calculate the distance between two zip codes. The process of creating a web service client in
OptimalJ took longer than it otherwise might have because the TMC team member had not
done it before and found it initially confusing. On the one hand, the product easily processed
the WSDL document into the necessary Java classes. But on the other hand, artifacts of the
new web service appeared in two separate places in both the application and code models;
optionally it could also have been added to the domain model.

A related problem had to do with the JAR file OptimalJ created for the web service client code.
One team member’s version of the generated JAR contained all the necessary code, while the
other’s did not. The discrepancy lay in the build script used to create the JAR; the two
members’ versions were at odds. After experimenting with recreating the JAR manually, the
team eventually got past the obstacle by synchronizing with the correct files; but they had spent
several hours looking for the cause of the discrepancy, without success. This incident

Page 21 of 25

MDA Maintainability Analysis Report
Copyright © 2004 The Middleware Company

highlighted again the hidden complexity of the MDA approach, which most of the time simplified
the team’s work but occasionally presented confusing problems.

On the other hand, when it came time to use the new web service, the TMC team member
found the process easy. He had defined a new domain service to manage shipping costs; one
of its operations was a simple wrapper to the web service. Since OptimalJ had already
wrapped the web service in a stateless session bean with a corresponding business façade,
implementing the new operation was extremely easy. Moreover, since the web service and
custom service methods automatically appeared in OptimalJ’s default application, testing the
new logic was equally simple.

6.2.2.4 MDA Team – Supplier Bids

This enhancement introduced schema changes that created new relationships to existing
entities. As a result the team faced the same model update challenge as in the Pet Maturation
piece. Fortunately they had learned from the previous experience. Other domain model
changes proved very straightforward.

The JMS portion was fairly easy. For message production, the team did the following:

• In the domain model, they defined a new data structure for supplier bid solicitation
messages and a domain service to handle message production.

• In the application model, they defined a JMS message and tied it to the data structure,
then tied that message definition to the stateless session EJB component that derived
from the new domain service.

To create a test JMS consumer, the team defined a message-driven bean (MDB) in the
application model, then auto-generated the Java code for it.

In this way, the team had to write virtually no JMS code to implement the spec requirements for
this enhancement. In fact, the only manual code necessary was in the onMessage method of
the MDB to handle message receipt.

6.2.2.5 MDA Team – Amazon Books

Having already once been through the exercise of creating a web service client, the team
thought that doing so for the Amazon web service would go smoothly. However, they
encountered a temporary obstacle. OptimalJ’s model checker reported many errors when
processing the Amazon WSDL document. They stemmed from the fact the WSDL uses locale
and key XML element names, which are reserved words in OptimalJ. After some research and
experimentation, the discovered that the errors did not prevent them from going forward, so
they were simply ignored.

6.2.2.6 MDA Team – Legacy Integration

Connecting to a mainframe application through a JCA adapter proved remarkably easy. The
teams were given an adapter for CICS applications and a piece of COBOL code containing the
required record structure, as well as basic information about the target application and some
rudimentary documentation. After the JCA adapter was installed (a simple process), setting up
the JCA client was much like defining a web service client:

• OptimalJ parsed the COBOL file much like a WSDL document to create the correct data
structure (a custom DTO). This process also created the appropriated elements in the
integration tier of the application model.

• The team had the product create corresponding data structures in the domain and
application models.

• Generating the code model (EJB and web code) from the application model was
straightforward.

Page 22 of 25

MDA Maintainability Analysis Report
Copyright © 2004 The Middleware Company

• The default application again proved handy for testing.

Overall, the process was extremely quick and did not require any knowledge of COBOL.

6.3 Quantitative results

To complete all five PetStore enhancements took the MDA team 164.8 hours of development
time, compared with 260.5 hours for the traditional team. This comes to a 37% improvement in
productivity for the team using MDA.

This result is well in line with those of the previous study, which found a 35% productivity
improvement for the MDA approach in building the PetStore application to the original baseline
specification. The new result indicates that the MDA approach can offer similar productivity
gains with respect to maintaining / enhancing an existing application.

A closer look at the teams’ experience with each individual enhancement can shed additional
light on the benefits of the MDA approach.

6.3.1 Pet Maturation

Of all the enhancements, this one most closely resembled the original PetStore development
experience in terms of its mix of tasks – designing / developing an entity model; writing
business logic; creating web pages and the request-handling logic behind them. This
enhancement required no integration tasks. Not surprisingly, the results are closely in line with
those of the original study.

6.3.2 Shipping Costs

Here the traditional team worked slightly more productively than the MDA team. A closer look
at the details reveals some interesting factors:

• In terms of schema changes and new or improved business logic, this enhancement is
much simpler than the first one. The traditional team spent half as much time on design
and got right to coding, whereas the MDA team modified their model and generated new
or modified code. Th e time savings from code generation over the time spent modeling
seems to be proportional to the size and complexity of the application or enhancement.
In other words, for a smaller piece of work such as this one, MDA did not pay off as
handsomely.

• This enhancement was the first to require use of a web service. The IDEs used by both
teams easily generated the basic Java stub code from a WSDL document, so there was
little difference on that count. However, the process of adding a web service to the MDA
model was more complex than adding one to a traditional project. The TMC member of
the MDA team faced a learning curve in this process that cost the team some time.

• Partially offsetting that cost, however, was the fact that the model also generated a
wrapper to that web service in the form of a stateless session bean and corresponding
business façade. These components slightly simplified the business logic that the MDA
team had to write.

• At the same time, the MDA team ran into a mysterious problem with the JAR file
generated for the web service. For unexplained reasons, OptimalJ did not properly build
the JAR containing the web service classes. The team lost two hours diagnosing the
problem and re-synchronizing before getting back on track.

We believe that, barring product-specific problems, the two teams would have completed this
enhancement in about the same time.

Page 23 of 25

MDA Maintainability Analysis Report
Copyright © 2004 The Middleware Company

6.3.3 Supplier Bids

While the results for this enhancement were much like those for the first one (Pet Maturation),
the nature of the work was very different. This enhancement had no UI requirements, but
added a JMS piece. The MDA team spent longer on design and modeling, but more than
made up for it in time savings on integration and business logic.

The MDA team was able to implement the JMS logic with little or no explicit JMS coding.

• For message production, the MDA team modeled a component and a message data
structure.

• For message consumption (for testing only, as allowed by the spec), the MDA team
modeled and generated a message-driven bean.

The traditional team, by contrast, manually wrote and debugged JMS client code for both
production and consumption.

6.3.4 Amazon Web Services

Here, as in the previous enhancement, integration played a key role; in this case, it was the
Amazon web service. Again, the MDA team benefited from having friendly wrapper code
generated along with the web service stub; they spent less time on integration and business
logic than the traditional team. In terms of UI work, the two teams spent about the same time.
But because there were no schema changes, the MDA team spent no time on modeling
(beyond the web service integration). This savings led to a greater margin than for
Enhancements One and Three.

6.3.5 Legacy Integration

The challenge in this enhancement was much like the previous one: very little change to the
data structures, some UI work, some business logic, but mostly integration. And the result was
a comparably large difference between the two teams.

Here the challenge centered almost exclusively on using JCA to send a query to a CICS
application and get a result. The MDA team was able to add the JCA integration to their MDA
model in almost exactly the same way as for a web service. This meant they could auto-
generate the stub code without having to know anything about COBOL. And, as with the web
services, they also auto-generated wrapper components. The entire effort was remarkably
easy.

The traditional team, by contrast, did not have the benefit of a wizard to generate their stub
code, so to keep the study’s focus on the differing approaches the team was given those
classes. The remainder of their work centered on installing the JCA adapter and integrating the
provided code into the application.

6.4 Factors that Affected Productivity

All in all, what factors accounted for increased (or possibly decreased) productivity from using
an MDA approach? To summarize the qualitative and quantitative results presented above,
here are some factors that affected productivity generally:

• Model-generated code. MDA clearly save d time in letting developers model complex
data relationships, then generating all the necessary plumbing code and components
according to J2EE patterns. The added time cost of modeling was more than repaid by
reduced coding time.

• For example, adding a property to a data structure required updating a DTO and the
code that populates it. At one point the traditional team expressed their frustration over
having to update so many files to make a change. Somewhat offsetting this frustration,

Page 24 of 25

MDA Maintainability Analysis Report
Copyright © 2004 The Middleware Company

they also noted that in many cases “having the DAO/DTO mechanism in place saved
significant time as complex queries and one-off use-cases were fairly trivial to
implement”.

• Greater benefit from larger tasks. That said, the MDA benefit is greater for more
complex modeling tasks. As we noted regarding the Shipping Costs enhancement, for
small structural changes the MDA payoff is smaller, perhaps even.

• The learning curve of MDA modeling. One small setback to productivity on the MDA
side was the complexity of the models and the relationships among their elements. The
tasks in this study involved MDA features not used in the first round. For example, we
noted how at several places the MDA team had to adjust properties of certain model
elements to get the proper results, or how defining a web service created an
unexpectedly large number of model artifacts. Whether this complexity is endemic to
MDA or specific to OptimalJ is unclear, but more experience with the MDA approach
would clearly reduce or eliminate this factor. If the MDA team had to make another,
comparable round of enhancements they could do so more quickly.

• Default application. The MDA team noted more than once the benefit of using
OptimalJ’s default application for testing. While this default application may be specific to
OptimalJ, it is generated by the standard MDA mechanism. Any MDA tool could produce
such an application, given the proper implementation template.

• Packaging the application. While the MDA team did have to understand how their tool
packaged the resulting application into archive files (WARs and JARs) – and at one point
even tried recreating a JAR manually – they never had to adjust that packaging. By
contrast the traditional team, at least for the legacy integration enhancement, had to
manually readjust the packaging of their application, moving certain classes into a new
JAR to solve a deployment problem.

Factors that seemed to be roughly comparable on both sides and thus did not confer any
productivity gain:

• Editing JSPs. The two teams’ IDEs were about equal in terms of editing JSPs. Both
teams edited their pages manually and used Struts tag libraries.

• Source control and team synchronization proved challenging on both sides. While the
MDA approach generated many metadata files that needed to be synchronized, the
traditional team had comparable challenges when certain key files were not properly
synchronized in source control.

Looking specifically at integration tasks:

• The MDA team benefited from easier integration of web services. The tool not only
generated stub code, but convenient wrapper components for using the client stub.

• The MDA team benefited in the same way when it came to legacy integration. The
traditional team, even after receiving the stub code, still had to write the wrapper code by
hand.

• The MDA team was able to build the JMS piece without writing any explicit JMS code.
The traditional team spent time writing and debugging explicit JMS client code.

7 CONCLUSION

Based on the results of this study, The Middleware Company continues to find Model-Driven
Architecture a significant and important technology for improving J2EE developer productivity.
The results of this study are in line with those of the previous one, indicating that MDA confers
productivity benefits to developers maintaining existing applications as well as building new
ones.

Page 25 of 25

MDA Maintainability Analysis Report
Copyright © 2004 The Middleware Company

We again encourage organizations wishing to improve their developer productivity to evaluate
MDA-based development tools for their projects. In doing so, we suggest they keep these
factors in mind:

• MDA seems particularly well suited for enterprise-class applications. The productivity
benefits are greatest with more complex applications and data structures.

• MDA also seems particularly well suited for handling integration technologies, particularly
JMS, web services and JCA.

• The learning curve for MDA can be significant. While MDA spares you from writing or
editing plumbing code and simplifies many design decisions, it still exposes the details of
J2EE technology. More importantly, it adds the intricacies of multiple layers of models.
Its power goes hand in hand with complexity.6 Architects practicing it must learn MDA on
top of (rather than instead of) J2EE. On the other hand, to the extent that a particular
MDA tool can segregate modeling from coding, thereby solidifying the division of labor
between architects and developers, the developers will face a much shallower learning
curve.

Please write us at research@middleware-company.com to share your impressions and
experiences with us.

6 To borrow a quote from one member of the MDA team in the first study: “It makes brain surgeons better brain surgeons, but it won’t make janitors

into brain surgeons.”

