
MDA PRODUCTIVITY CASE STUDY CASESTUDY@MIDDLEWARE-COMPANY.COM
COPYRIGHT © 2003 THE MIDDLEWARE COMPANY PAGE 1 OF 18

Model Driven Development for
J2EE Utilizing a Model Driven
Architecture (MDA) Approach

Productivity Analysis

June 2003

Java, J2EE, and XML Web Services Expertise

MDA PRODUCTIVITY CASE STUDY CASESTUDY@MIDDLEWARE-COMPANY.COM
COPYRIGHT © 2003 THE MIDDLEWARE COMPANY PAGE 2 OF 18

Table of Contents

TABLE OF CONTENTS... 2

1 EXECUTIVE SUMMARY... 3

2 INTRODUCTION.. 3

2.1 WHAT IS THE MODEL-DRIVEN ARCHITECTURE (MDA)?... 3
2.2 WHO IS BEHIND MDA?.. 4
2.3 HOW IS MDA DIFFERENT FROM TRADITIONAL DEVELOPMENT?.. 4
2.4 WHAT ARE THE SUGGESTED BENEFITS OF MDA?... 4

3 STUDY DESCRIPTION... 5

3.1 ABOUT THE SPECIFICATION.. 5
3.2 CHOICE OF APPLICATION.. 6
3.3 OVERVIEW OF THE RULES .. 7
3.4 OVERVIEW OF TESTING PROCESS ... 8
3.5 OVERVIEW OF THE TEAMS.. 8
3.6 OVERVIEW OF PROJECT SCHEDULE AND PROJECT MANAGEMENT APPROACH.. 9

4 STUDY RESULTS... 9

4.1 ARCHITECTURAL ANALYSIS... 9
4.1.1 UML and Code Generation.. 9
4.1.2 The Web Tier ...10
4.1.3 The EJB Tier..10
4.1.4 Security ..11

4.2 QUALITATIVE RESULTS ..11
4.2.1 Traditional Team...11

4.2.1.1 Traditional Team - Week 1 ..11
4.2.1.2 Traditional Team - Week 2 ..12
4.2.1.3 Traditional Team - Week 3 ..12
4.2.1.4 Traditional Team - Weeks 4 and 5...12

4.2.2 MDA Team ..13
4.2.2.1 MDA Team - Week 1...13
4.2.2.2 MDA Team - Week 2...13
4.2.2.3 MDA Team - Week 3...14
4.2.2.4 MDA Team - Week 4...14

4.3 QUANTITATIVE RESULTS..14

5 CONCLUSION...15

6 APPENDIX: DESIGN PATTERNS GLOSSARY ...16

6.1.1 Session-Entity Wrapper ..16
6.1.2 Primary Key Generation in EJB Components...16
6.1.3 Business Delegate ...16
6.1.4 Data Transfer Objects (DTOs)...17
6.1.5 Custom Data Transfer Objects...17
6.1.6 DTO Factory ...17
6.1.7 Service Locator ...17
6.1.8 Business Interface ...17
6.1.9 JDBC for Reading via Data Access Objects (DAOs)..17

MDA PRODUCTIVITY CASE STUDY CASESTUDY@MIDDLEWARE-COMPANY.COM
COPYRIGHT © 2003 THE MIDDLEWARE COMPANY PAGE 3 OF 18

1 Executive Summary

Recently the Object Management Group (OMG) released their Model Driven Architecture (MDA), a new
paradigm in server-side development. MDA differs from traditional development in that with MDA you
first build your object model using the Unified Modeling Language (UML), then generate your code from
that UML model using a code generation tool that uses a pattern repository. The OMG believes MDA has
many benefits associated with it—perhaps one of the most exciting is increased developer productivity.

The purpose of this case study is to prove or disprove the claims of increased development productivity
stemming from MDA-based tools. Two teams developed the same J2EE PetStore application—one team
used an MDA-based tool, while the other team used a modified code-centric approach with a traditional
enterprise-caliber integrated development environment (IDE).

The result of this study is the MDA team developed their application 35% faster than the traditional team.
The MDA team finished in 330 hours, compared to 507.5 hours for the traditional IDE team. As a result of
this case study, The Middleware Company is recommending that development shops interested in
increasing their productivity evaluate MDA-based development tools for use in their projects.

2 Introduction

By reading this case study, you will learn an overview of the MDA paradigm and see what productivity
gains, if any, a team might experience by embracing it. If you are looking for maximum developer
productivity within your projects, then this case study is a must-read.

2.1 What is the Model-Driven Architecture (MDA)?

The Model-Driven Architecture is a development paradigm that aims to insulate business and application
logic from technology evolution. It helps you build code quickly, in a middleware-independent, well-
architected, consistent and maintainable fashion.

The crux of the MDA paradigm is a development process with the following steps:

1. Secure business requirements for an application.

2. Develop UML diagrams for the domain model, independent of any particular technology (J2EE,
Microsoft .NET, CORBA, etc.). This UML model represents the core business services and
components. It will have elements such as a pricing engine, a shopping cart or an order. This
UML model is called a Platform-Independent Model (PIM) because it is completely technology-
independent—this UML model would be the same regardless of whether you decided to use
J2EE or .NET. You develop this UML model using the UML modeling capabilities of an MDA-
specific modeling tool.

3. Build UML diagrams for the application, specific to a particular technology (such as J2EE, for
example). This UML model will have elements that are technology-specific, such as specific
J2EE design patterns. This UML model is called the Platform-Specific Model (PSM). You can
build this manually, or you can generate much of it using an MDA tool and hand-tune only the
pieces of it that require customization.

MDA PRODUCTIVITY CASE STUDY CASESTUDY@MIDDLEWARE-COMPANY.COM
COPYRIGHT © 2003 THE MIDDLEWARE COMPANY PAGE 4 OF 18

4. Finally, generate the application code using an MDA tool. That is to say, instead of writing the
application by hand based on the UML model, you generate the majority of it from the UML
diagrams. In the case of J2EE, the MDA tool would generate most of the servlets, JSPs and
EJBs. You would then be left to fill in any details that could not be modeled using UML, such as
business logic.

2.2 Who is behind MDA?

Object Management Group (OMG) created the Model-Driven Architecture. OMG is an industry standards
body represented by several hundred member organizations drawn from both the IT user and vendor
communities. OMG is the home of several widely used standards, including Unified Modeling Language
(UML) and the Common Object Request Broker Architecture (CORBA). Because it was developed using
OMG's open process, MDA is a vendor-neutral approach; any vendor can create an MDA tool that assists
with the MDA process. For more information about MDA, please refer to OMG's white papers on the
subject, available from http://www.omg.org.

2.3 How is MDA different from traditional development?

We have mentioned several times that MDA lets you generate code from UML models. That is true, but it
was also true pre-MDA. Rational Rose, for example, can generate Java classes from a UML model. The
key advancement of MDA is that it lets you go from a platform independent, high-level design all the way
to platform specific code that is fairly complete. There are several particular points to note:

� MDA starts from a higher level of abstraction than other design processes. The top-level model
(PIM) is very abstract; just entities and services.

� The PSM is a complete description of the application in the form of metadata. At that level you
can enhance the design with technology specific features (e.g. custom finders for EJB entity
beans) without touching Java code.

� The code generated from the PSM is close to a complete application. Many tools generate code
from some kind of model (such as Middlegen or XDoclet), but they give you pieces of an
application. They are not comprehensive because they do not start from a complete model of the
application.

� The algorithms that generate PSM from PIM, and code from PSM, are intended to be
configurable by the architect.

2.4 What are the suggested benefits of MDA?

The organizations that have collaborated to produce MDA believe that it will result in the following
benefits:

Faster development time. By generating code rather than handwriting each file, you are saving the “busy
work” required to write the same files over and over again. For example, in the J2EE world, you
sometimes need to write six or more files to create just one EJB component. Most of this can be automated
with a clever code generation tool.

Architectural advantages. When using MDA, you model your system using UML—not just by
modeling Java classes, but high-level domain entities as well. This procedure forces you to actually think
about the architecture and object model behind your system, rather than simply diving into coding, which
many developers still do. Software engineering principles have proven that by designing your system first,

http://www.omg.org

MDA PRODUCTIVITY CASE STUDY CASESTUDY@MIDDLEWARE-COMPANY.COM
COPYRIGHT © 2003 THE MIDDLEWARE COMPANY PAGE 5 OF 18

you’ll reduce the possibility of introducing architectural flaws into your system later on in the development
life cycle.

Improves code consistency and maintainability. Most organizations have problems keeping their
application architectures and application code consistent in their projects. Some developers will use well-
accepted design patterns, while others will not. By using an MDA tool to generate your code with a
consistent algorithm, rather than writing it by hand, you give all developers the ability to use the same
underlying design patterns, since the code is generated in the same way each time. This is a significant
advantage from the maintenance perspective. For example, developers at organizations that subscribe to an
MDA approach to development will all be able to understand each other’s code more easily because they
will be leveraging the same design paradigm and language.

Increased portability across middleware vendors. If you need to switch between middleware platforms
(for example, switching between J2EE, .NET or CORBA), the Platform-Independent UML Model (PIM)
is reusable. From the PIM, one should be able to regenerate the code for the new target platform. While not
all of the code can be regenerated automatically, the ability to regenerate a large proportion of one
application certainly would save time over having to rewrite it all from scratch. (Note: The Middleware
Company believes organizations probably won’t take advantage of CORBA, J2EE and .NET neutrality.
However, we can see how this may be useful, for example, to independent software vendors (ISVs) selling
products that need to support a variety of J2EE application servers so that they can sell their software to any
J2EE customer).

In this case study, we focused on evaluating the benefit of faster development time. We will not be
evaluating some of the other suggested advantages of MDA, such as easier maintenance and improved
quality, although we plan to do so in future case studies.

3 Study Description

To evaluate the claim of faster development time using MDA, Compuware Corporation commissioned
The Middleware Company to perform a case study where two teams would develop the same
application—one team using MDA, the other not. The Middleware Company was chosen to perform this
case study primarily because it is vendor-neutral and therefore unbiased in the outcome of the study. The
Middleware Company pledges to you that it has conducted itself in a fair and impartial manner in this case
study.

In this study, we will not be mentioning the names of the tools being used by team members, although to
ensure fair representation of the code-centric approach, we can verify that one of the market’s leading IDEs
was used. We want this study to be an educational evaluation of the productivity gains that may be
obtained from tools that apply the MDA approach, as compared to traditional, code-centric environments.
We don’t want this study to turn into a “vendor shoot-out.”

3.1 About the specification

When performing a case study such as this one, there is the danger that the teams would diverge and build
non-comparable applications. To avoid this problem, we wrote a 46-page specification for the J2EE
PetStore that described in detail the requirements for the application, from the database to the web user
interface. You can download the specification from our web site, http://www.middleware-
company.com/casestudy.

http://www.middleware-company.com/casestudy

MDA PRODUCTIVITY CASE STUDY CASESTUDY@MIDDLEWARE-COMPANY.COM
COPYRIGHT © 2003 THE MIDDLEWARE COMPANY PAGE 6 OF 18

The functional specification used for this productivity case study is called The Middleware Company
Application Server Platform Baseline Specification. This is a specification that was independently created
by The Middleware Company over a period of two to three months with the help of a distinguished panel
of experts. The panel of experts included book authors, open source contributors, CTOs and VPs of
Engineering, representatives from two of the top three IT research firms in the United States, and interested
critics of prior case studies conducted by The Middleware Company. The expert group members include:

Assaf Arkin (Chief Architect, Intalio), Clinton Begin (Author, Open Source JPetStore), Rob Castaneda
(Author, CEO, CustomWare Asia Pacific), Salil Deshpande (The Middleware Company), William
Edwards (The Middleware Company), Marc-Antoine Garrigue (OCTO, lecturer ENSTA), John
Goodson (VP, DataDirect), Erik Hatcher (Author, Java Development with Ant), Rod Johnson (Author,
Expert 1-on-1: J2EE Design & Development), Anne Thomas Manes (Analyst, CEO, Bowlight), Vince
Massol (Author, JUnit in Action), John Meyer (J2EE/.NET Analyst, Giga Information Group, now
Forrester Research), Tom Murphy (J2EE/.NET Analyst, META Group), Cameron Purdy (CEO,
Tangosol), Roger Sessions (.NET Guru, Founder, ObjectWatch), Vivek Singhal (CTO & VP Engr,
Persistence Software), Bruce Tate (Author, Bitter Java), Bruno Vincent (OCTO), Andrew Watson (Vice
President & Technical Director, Object Management Group), Wayne Williams (CTO, Embarcadero
Software), Joe Zuffoletto (Author, BEA WebLogic Server Bible)

The specification was created to make possible not just productivity case studies, but also several other
kinds of studies: architecture and design, performance, interoperability, and more.

3.2 Choice of application

We decided to use the familiar J2EE PetStore application for this comparison. While we acknowledge that
the PetStore has its advantages and disadvantages, we chose it primarily because it is a simple application
that is familiar to the majority of the community. That familiarity is important to us because we wanted the
community to easily understand the case study.

For those of you who may be unfamiliar with the PetStore, it is a simple web-based J2EE e-commerce
system. The PetStore has the following functionality:

User management and security. Users can sign into a system and manage their account.

A Product catalog. Users can browse a catalog of pets on the web site (such as birds, fish or reptiles).

Shopping cart functionality. Users can add pets to their shopping cart and manage their shopping cart.

Order functionality. Users can place an order for the contents of their shopping carts.

Web services. Users can query orders via a web service. We extended the PetStore to include this
technology, since web services are an emerging area of interest.

From a technology perspective, the PetStore includes the following:

� A thin client HTML UI layer
� JSPs to generate HTML on the server
� JDBC SQL-based data access
� EJB middle tier components
� Ad-hoc database searching
� Database transactions
� Data caching
� User/Web session management

MDA PRODUCTIVITY CASE STUDY CASESTUDY@MIDDLEWARE-COMPANY.COM
COPYRIGHT © 2003 THE MIDDLEWARE COMPANY PAGE 7 OF 18

� Web Services
� Forms-based authentication

It should be noted that “PetStore” evokes mixed emotions in some people, because Sun Microsystems
never intended the original PetStore sample application to be used as a basis of a case study. After all,
PetStore was originally merely a sample application for J2EE, not a fully blown specification.
Furthermore, the original PetStore did not represent a well-architected application.

We believe we have addressed these challenges in the following ways:

� We now have a specification for the PetStore, rather than merely an implementation.
� The “modern” PetStore implementations, which conform to our specification, have departed

substantially from Sun’s original implementation. Practically, what the specification has most in
common with Sun’s original PetStore is that the application domain involves pets being
purchased.

� The specification does not mandate any particular architectural approach to designing the
PetStore, giving teams the freedom to architect their applications as they see fit.

3.3 Overview of the rules

The specification describes in detail the rules for building the application. For example, the specification
describes what data can be cached, database exclusivity rules, requirements for forms-based authentication
and session state rules. It also describes in great detail the required experience of using the application.

We gave each team the same HTML and images. Furthermore, each team was required to use the same
database schema. We decided to do this because we wanted to measure the productivity of J2EE coding,
not database creation or image generation. We also wanted to make sure that the user interfaces were as
close to identical as possible.

We did mandate that the teams use EJB in their code bases. However, beyond this, we did not mandate the
details of the implementation of the J2EE code, including choice of J2EE implementation patterns—those
decisions were left up to each team. What mattered to us was that the resulting application behaved
similarly for each team.

Furthermore, each team was given their choice of using any J2EE-compliant application server. This was
also intentional because we wanted each team to use the application server most familiar to them, to
maximize their productivity. After all, this is a productivity case study.

We will not be mentioning specific product names of application servers used. Mentioning application
server names wouldn’t be fair to those vendors, since they were not invited to participate in this case study
and assist with the process.

Each team could also choose their own source control tool, as well as miscellaneous J2EE helper tools,
such as logging tools or documentation tools. Again, given that this is a productivity study, we felt it most
appropriate to give the teams freedom to choose the tools that would make them most productive based on
their experience. Both teams chose the following tools:

MDA PRODUCTIVITY CASE STUDY CASESTUDY@MIDDLEWARE-COMPANY.COM
COPYRIGHT © 2003 THE MIDDLEWARE COMPANY PAGE 8 OF 18

Tool Purpose Comments
StarTeam Version control StarTeam is recognized as a leading version control system.

We use it internally at The Middleware Company for many
purposes.

Apache Axis Web services Apache Axis is compliant with Sun’s Java API for XML
Parsing (JAXP) standard.

Apache Log4J Logging and
auditing

Apache Log4J is quickly becoming a standard logging
package for use in J2EE projects.

Note that we did mandate the MDA team to utilize a tool that maintains adherence to MDA. For the
traditional development team, we mandated they utilize a leading traditional J2EE EIDE. We did this
because the point of the study was to compare different development paradigms, and therefore each team
should use the tool appropriate for that paradigm.

3.4 Overview of testing process

Each team performed unit testing prior to submitting their final code bases. Furthermore, to ensure that the
final applications behaved similarly, we ran each application through a rigorous testing process. This
process comprised 37 testing scenarios that we performed manually on each application. The test scenarios
measured whether the applications performed as described in the original specification. The test scenarios
are functional in nature, in that they do not perform unit testing of code, but rather describe a process for a
tester to interact with the application using the web interface. For example, one of the test scenarios was to
sign into the system and edit account information. Both teams’ applications passed the tests.

We also tested both teams’ code for acyclic dependencies using a package structure analysis tool (available
for download at http://javacentral.compuware.com/pasta/). Both teams scored 90% on their acyclic
dependency tests, which is excellent.

Finally, we visually inspected the code generated by both teams, since many code-generation tools are
known to produce “bad code.” Based on our inspection we believe the generated code to be of good
quality.

3.5 Overview of the teams

We went to great lengths to ensure that the teams had roughly similar skill-sets, so that neither team would
have an inherent advantage over the other. Each team member had significant experience with J2EE
development on a variety of application servers. Furthermore, to help factor out differences in skill sets,
time was spent orienting the developers on the tools and technologies they would use. The teams also
worked out minor team formation issues. This time was not part of our final tally of productivity.

Each team consisted of 3 members:

One senior J2EE architect. This individual had detailed knowledge of the respective development
environment. He had responsibility for development, architecture and identifying the appropriate work
assignments for completing the specification.

Two experienced J2EE programmers. These individuals each had at least 3 years of experience
developing J2EE applications.

http://javacentral.compuware.com/pasta/

MDA PRODUCTIVITY CASE STUDY CASESTUDY@MIDDLEWARE-COMPANY.COM
COPYRIGHT © 2003 THE MIDDLEWARE COMPANY PAGE 9 OF 18

3.6 Overview of project schedule and project management approach

To keep an accurate log of the experiences of each team, we held weekly conference calls separately with
each team. We took copious notes about the teams’ week-by-week experiences in these calls. The teams
would answer the following questions:

� What did your team work on this week?

� What was good this week from the productivity perspective?

� What was challenging this week from the productivity perspective?

Summaries of these notes are presented in the next section of this case study.

At the onset of the project, we held a project kickoff event where each team estimated how long it would
take them to complete their project. Additionally, each team submitted weekly timesheets detailing their
activities from the prior week. These timesheets included estimated time verses actual time spent on tasks.

4 Study Results

In this section, we will discuss the results of the case study. The results are broken up into the following
upcoming sections:

In the architectural analysis section you will learn about the architecture and J2EE patterns used by
each team. We have created a special Design Patterns Glossary section later in this document that
explains each pattern briefly. The glossary should be an interesting read for those of you who are
aspiring J2EE architects. If you are not familiar with J2EE patterns, you may want to read that
glossary before reading the architectural analysis.

In the qualitative results section you will hear each team’s qualitative thoughts on the development
approach they chose. You’ll understand the issues each team encountered, and how they resolved
those issues.

In the quantitative results section you will see the final productivity result numbers of each team.

4.1 Architectural analysis

4.1.1 UML and Code Generation

Both teams created UML diagrams for their object models. In fact, they each created very similar object
models. They each had abstractions for:

� User Accounts
� User Profile Information
� Products
� Product Categories
� Suppliers
� Shopping Carts
� Orders
� Line Items

MDA PRODUCTIVITY CASE STUDY CASESTUDY@MIDDLEWARE-COMPANY.COM
COPYRIGHT © 2003 THE MIDDLEWARE COMPANY PAGE 10 OF 18

The traditional team created UML diagrams for their object model using an open-source tool. They made
their UML strictly for design and communication purposes—they did not auto-generate J2EE code from
the UML. They did, however, use their IDE's wizards to generate JavaBean accessor/mutator methods,
EJB components, struts code, exception handling code and stub-code that sped the implementation of
interfaces.

The MDA team created a UML Platform-Independent Model (PIM) as well as Platform-Specific Model
(PSM) using their MDA tool. They auto-generated more of their code than the traditional team due to the
UML code generation capabilities of the MDA approach. This generated code included JSPs, EJB
components, Struts code, exception handling code and interfaces, as well as numerous design patterns and
scaffolding code that you need to write when building an application. In addition to the scaffolding code,
the MDA tool used the UML object models and generated a working application based on the tool's code-
generation patterns.

4.1.2 The Web Tier

Both teams used a combination of servlets, JavaServer Pages (JSPs), and JSP tag libraries (taglibs) in their
web tiers. Both teams used Apache Jakarta Struts as the framework for navigation within their web tier.
Struts is a popular open source framework for building J2EE-based web applications. It encourages use of
the well-accepted Model-View-Controller (MVC) design paradigm. Both teams leveraged automated code
construction for the MVC.

4.1.3 The EJB Tier

From the architectural perspective, the material differences between the two groups’ EJB tier code are the
patterns they chose to use.

Pattern Traditional Team MDA Team
Session-entity wrapper Yes Yes
Primary Key generation in EJB components Yes Yes
Business delegate Yes Yes
Data Transfer Objects (DTOs) Yes Yes
Custom DTOs Yes Yes
DTO Factory Yes No
Service locator Yes No
JDBC for Reading via Data Access Objects (DAOs) Yes No
Business interface Yes No
Model driven architecture No Yes

As you can see from the table above, both teams used a good deal of J2EE design patterns. Although this
might be seen as “overkill” for a PetStore application, we wanted to use patterns that a real development
shop would use for an actual project, so that we could really put MDA productivity to the test.

Also of note, the traditional team used more patterns than the MDA team. When we first put together this
comparison table, this concerned us. Did the traditional team’s use of additional patterns invalidate this
productivity case study? After all, one might think that the traditional team’s code base would naturally
take longer to develop given that more patterns were used.

To answer this question, we analyzed each of the patterns used in detail. We also interviewed members of
both teams. After conducting this research, our consensus on this matter is that even with the additional
patterns used by the traditional team, this comparison is still perfectly valid. To help you understand why
this is the case, let’s take a look at each pattern the traditional team used and the MDA team did not use:

The service locator pattern did not cause the traditional team extra work. In fact, it saved them time,
because by using this pattern, it simplified the code written by clients to the EJB tier including EJB

MDA PRODUCTIVITY CASE STUDY CASESTUDY@MIDDLEWARE-COMPANY.COM
COPYRIGHT © 2003 THE MIDDLEWARE COMPANY PAGE 11 OF 18

components calling other EJB components. It reduced the necessary lines of code as it was implemented
using a single class with static methods. All EJB access was accomplished using those methods.

The JDBC for Reading via DAOs pattern did take the traditional team time to implement; however,
had they not used this pattern, they would have had to write entity beans instead of the data access
objects (DAOs). Furthermore, the MDA team had to write some code to sort data manually, which the
traditional team achieved through the JDBC for Reading pattern. Therefore this did not cause the
traditional team any material increase in work.

The business interface pattern did not cause the traditional team any material amount of work.
According to them, it took roughly 10 minutes per interface. Furthermore, the MDA team also had to
create business interfaces – just at a higher level, since they had to create the business object model using
the MDA-recommended platform-independent model (PIM).

The DTO Factory pattern took the traditional team a small amount of time to implement and test.
However, using this pattern actually saved them time since this pattern reduces the amount of code you
need to write in your application.

It should also be noted that the traditional team had one of the world’s top J2EE patterns experts (Owen
Taylor, author of our J2EE Patterns course). This expert knowledge of patterns is not common amongst
most IT development organizations. It is therefore understandable that the traditional team used more
patterns than the MDA team. Since the patterns chosen by the traditional team did not hamper their time to
develop their code base, our conclusion is that there is no evidence in comparing the architectures that
would invalidate a productivity comparison.

4.1.4 Security

For the most part, the two applications built by the teams were very similar. However, one interesting area
where the two teams diverged was in the area of security.

To address security, the traditional team used an authentication filter. This filter checks to see if the
currently requested page is restricted and, if it is, checks to see if the user is signed in (sign-in information is
stored in the HTTP Session). The team wrote this filter from scratch. The filter implements the
javax.servlet.Filter interface, supplied by Sun Microsystems.

By way of comparison, the MDA team used their MDA tool to assist with development of the security
system. Their MDA tool provided a security framework allowing them to select from a variety of
authentication methods, including simple authentication, digest-based, form-based, and programmatic. The
team chose to use the programmatic approach. The framework also provided login and logout JSP pages
that the team customized for the PetStore requirements.

4.2 Qualitative results

In this section, we’ll review qualitative thoughts from both teams, summarized directly from their weekly
status updates.

4.2.1 Traditional Team

4.2.1.1 TRADITIONAL TEAM - WEEK 1

The traditional team adopted an iterative prototyping style development process. In the first week, they
built a simple prototype that allowed them to architect their design patterns basis for their project. It was a
fairly involved process for them to establish a comfortable development environment, and they ran into a
few challenges getting StarTeam version control to collaborate effectively with their IDE. They used
workarounds to sidestep this issue, which was largely resolved by week 2. They also spent a good amount

MDA PRODUCTIVITY CASE STUDY CASESTUDY@MIDDLEWARE-COMPANY.COM
COPYRIGHT © 2003 THE MIDDLEWARE COMPANY PAGE 12 OF 18

of time during week 1 architecting the object model for their system, deciding on a package structure, and
other environment-related issues.

From the productivity perspective, they were impressed by the capabilities of their IDE that first week.
They found the IDE to integrate well with their chosen application server, as well as have good code
generation capabilities. It helped that each of the team members had experience with the IDE in the past.

Their productivity challenges this week related to sharing files, communication issues, performing code
reviews, and maintaining a consistent package structure.

4.2.1.2 TRADITIONAL TEAM - WEEK 2

In week two, the traditional development team began to specialize in their various development roles. One
team member owned the model (EJB) layer, another team member owned the view (web) layer, while a
third team member added value through providing helper classes and interfaces between layers to keep the
team members productive.

The team decided to build their system in a use-case fashion, by focusing on each use-case in turn. This
week they worked on user account maintenance use-cases, such as sign-in, sign-out, user creation and user
preference maintenance.

From the productivity perspective, what they found good this week was leveraging the Struts framework.
They found Struts coding to be very efficient. Furthermore, they decided to use a strategy of decoupling
their web tier and business tier by allowing “stub” implementation code to be plugged in for code that was
not fully built yet. They switched between “stub” and “real” code through properties files and the business
delegate design pattern described in the appendix.

The productivity challenges this week were the typical ones a development team first encounters, such as
consistent use of source control. They also had some challenges with their IDE, in that if they tried to
generate J2EE components from their IDE, and needed to modify them later, the components did not
round-trip back into the IDE very easily.

4.2.1.3 TRADITIONAL TEAM - WEEK 3

This week, the traditional team continued their development by working on product catalog browsing, as
well as some shopping cart functionality.

From the productivity perspective, what they found good this week was that they had resolved their version
control collaboration issues. They also reduced build-time dependencies by building libraries of interfaces
that team members could use. At this stage in development, each team member was very productive and
the project was well partitioned so that each team member had his own area of development. Furthermore,
their IDE had been providing them value in code generation capabilities.

The only challenges this week were clarifications required for the PetStore specification, and some minor
refactoring they needed to perform on their shopping cart.

4.2.1.4 TRADITIONAL TEAM - WEEKS 4 AND 5

In their final weeks, the traditional development team wrapped up their application by coding the final use
cases, performing testing, and debugging. Also, they integrated their team members’ code together,
abandoning the stub implementations that had served their purpose.

MDA PRODUCTIVITY CASE STUDY CASESTUDY@MIDDLEWARE-COMPANY.COM
COPYRIGHT © 2003 THE MIDDLEWARE COMPANY PAGE 13 OF 18

Productivity gains these weeks included several items. They received a continual benefit from the stub
implementation architecture they chose. Very little team communication was required given the interfaces
they had authored that allowed them to collaborate efficiently. Also, their web service implementation was
built very quickly, as their IDE provided capabilities enabling them to do this—specifically, code
generation capabilities in the form of automated WSDL generation and SOAP server deployment.

The challenges this week included some re-factoring and re-analysis of code, such as in their data access
layer, which had several flaws. The fact that their application had many layers also caused challenges
when things broke, since it was not always clear where the issue was until they delved into the layers.
They also had some other minor issues related to Struts and property files.

4.2.2 MDA Team

4.2.2.1 MDA TEAM - WEEK 1

In the first week, the MDA team performed many of the typical steps project teams go through at the onset
of their project. They created a detailed design of their object model using their MDA tool’s UML
modeling capabilities. They set up their source control system, and began to partition the project tasks so
that each team member could remain efficient. They also set up a project directory structure and began
some initial development.

What was good this week from the productivity perspective was they noticed that they didn’t need to build
very many components, because the MDA tool was capable of generating the code for them. In fact, they
noticed the tool could generate not only the components, but also much of the ‘scaffolding’ code that links
the components together, generating the application end-to-end. The team anticipated 50 to 90 percent of
their application could be generated, including web pages, Struts actions, EJB entity beans, EJB session
bean facades, J2EE design pattern scaffolding code and database tables.

The key challenge this week was to grasp mentally the new paradigm that the MDA approach represents.
The approach was a departure from things they had been doing traditionally, and the tool they used
provided many layers and structure that required ramp-up time.

4.2.2.2 MDA TEAM - WEEK 2

In week 2, the MDA team was knee-deep in development. They had completed many parts to their site,
including their UML object model, their framework for components, the site navigation system, JSP
templates (made in Dreamweaver) that have some code common to all pages, their home page, a good
portion of the EJB shopping cart functionality and minor user account management functionality.

What had been good this week from the productivity perspective was that they were able to generate EJB
session/entity bean code, web tier code, and a DDL model from their UML object model. It was also very
easy to create a test data set. Finally, the end-to-end application framework provided by their MDA tool
allowed them to integrate their components together quickly.

The challenges this week were similar to those of the traditional team. They had environment challenges,
including getting used to their source control system in a collaborative development environment. They
spent quite a bit of time getting their product configured. They also underestimated the learning curve
required to embrace their MDA tool, and had to continually learn throughout the week to get used to the
paradigm shift from traditional development. Finally, they realized that the code generation capabilities of
MDA are sometimes overkill, in that it generated heavier code than they needed. They did want to note,
however, that it was possible to modify the algorithms used by the tool to generate code, and in a real
project that would be done to alleviate this problem, however this fell outside the scope of this case study.

MDA PRODUCTIVITY CASE STUDY CASESTUDY@MIDDLEWARE-COMPANY.COM
COPYRIGHT © 2003 THE MIDDLEWARE COMPANY PAGE 14 OF 18

4.2.2.3 MDA TEAM - WEEK 3

During week 3, the MDA team finished several more use-cases for their system, including shopping cart,
order processing, account management, and a sign-in module.

From the productivity perspective, several good things happened this week. Their security system was
built very easily since the MDA tool assisted them in this code generation. Their idea of using JSP
templates also was beneficial, since their JSPs in essence “inherited” common code from other JSPs, so
common code could be updated in a centralized place.

One developer was starting to see the benefits of the MDA process this week, and felt compelled to make
the following statement:

The value of MDA is analogous to the value of OO in general. It requires more of you in the design phase,
and the payoff comes in the implementation phase. And once you’ve built one or two apps, you really start
to get the benefit from it.

They also had several challenges this week. They ran into some Struts nuances that bogged them down
temporarily. They also had a minor issue relating to using session identifiers and cookies with web
browsers. Their final challenge this week was MDA-related. They noticed that with the MDA process, you
may run into development potholes due to a mismatch between the code that you thought would be
generated, and the code that was actually generated. Their MDA tool sometimes generated code they
didn’t need, or too much code, which did not help productivity. What the team realized was that their own
inexperience with MDA and code generation was the cause of this problem, since they were inexperienced
in anticipating what code would be generated. They believe this would be solved with experience and time
with using their MDA tool, and the more they used it, the more productive they became. But the short-
term unfamiliarity with their MDA tool did cost them a few minor delays.

4.2.2.4 MDA TEAM - WEEK 4

In week 4, the MDA team finished their development, testing and debugging.

From the productivity perspective, their positive gains this week were due to MDA-based code generation,
as well as the value of the Struts framework and authentication framework that came with their MDA tool.
Also, the integration process they used ran very smoothly.

The challenge this week was that sometimes the code that was generated was a liability. They would either
have to materially modify it, or abandon it. They did note, however, that the code they wrote manually was
patterned after what the MDA tool generated, and that gave them a leg up from the implementation
perspective. They also had challenges with source control integration of the MDA tool. The takeaway
point they wanted to note is that when you’re using a complex product like an MDA tool, you need to
understand what’s going on and be careful about how you mesh it with version control. First-time users
may stumble a couple of times before getting it right.

4.3 Quantitative results

Here is the final tally of development hours spent by each team:

Team Original Estimated Hours Actual Number of Hours

Traditional team 499 507.5

MDA team 442 330

MDA PRODUCTIVITY CASE STUDY CASESTUDY@MIDDLEWARE-COMPANY.COM
COPYRIGHT © 2003 THE MIDDLEWARE COMPANY PAGE 15 OF 18

As you can see, the MDA team was the clear winner from the productivity perspective in this case study.
They came in well ahead of their estimate. Of note, the MDA team did not experience this productivity
benefit right away. Their productivity seemed to get better and better as the project duration increased.
They attribute this to the fact that an MDA tool does have a ramp-up time associated with it, since it is a
new paradigm for most developers. Indeed, one of the programmers expected that the team would have
been 10-20% faster were it not for the learning curve they experienced, as this was their first project using
the tool.

Also of note, we did not perform formal “bug tracking” in this project; however, we did perform the
manual scenario tests described earlier in this document. One interesting point to note was that several
bugs were found during the testing process for the traditional IDE team, and none for the MDA tool team.
We believe this is due to the consistency of the code generated using the MDA paradigm.

5 Conclusion

Based on the results of this case study, The Middleware Company is impressed by the productivity gains
our MDA team experienced using the Model-Driven Architecture. We encourage organizations that wish
to improve their developer productivity to evaluate MDA-based development tools for their projects,
especially those involving enterprise-class applications and web services. While a short introduction to the
MDA approach and tools might be necessary for development teams, the productivity benefits gained from
the approach—especially for work on subsequent applications—make the effort significantly worthwhile.

We believe MDA has other values as well. For example, the Platform-Independent Model (PIM) has a
very long lifespan. As a development shop, it behooves you to create a business object model such as this
that survives technology and lasts for many years. This is an important tool to have in communicating
between developers who may be using different tools and technologies.

Another benefit we see to MDA is that it enables the knowledgeable architects within an organization to
ensure that the average developer use consistent J2EE design patterns. The architect can achieve this by
using the MDA tool to automatically generate pattern code tuned to the architect’s wishes. In this manner,
the use of patterns becomes a natural part of developers’ coding.

One of our team members made the following comment about MDA: “It makes brain surgeons better brain
surgeons, but it won’t make janitors into brain surgeons.” What he means by this is MDA is best utilized
with capable, experienced architects at the helm of a project. You still need to have staff members be
knowledgeable about J2EE patterns and best practices, object-oriented development, and architectural
tradeoffs.

Finally, in terms of code and application quality, a significant observation was that the bugs found using
hand-coding methods required remediation and re-testing, which further impacts overall development
productivity. The MDA team using automatic code generation via patterns did not require these additional
steps to construct their application.

Note that there are other interesting aspects to MDA that we had not evaluated in this case study, such as
application performance and maintainability. We did do some basic performance testing to determine that
performance between the applications was comparable. However, to obtain the necessary comprehensive
and objective results, we feel that this merits further investigation. Also, in the context of maintainability,
we think it would be very interesting to see how easy it is to change code in a system built using MDA,
compared to a system built using a traditional approach. After all, when you refactor an MDA-based
system, you modify the original UML and re-generate code from that UML.

MDA PRODUCTIVITY CASE STUDY CASESTUDY@MIDDLEWARE-COMPANY.COM
COPYRIGHT © 2003 THE MIDDLEWARE COMPANY PAGE 16 OF 18

Therefore, to further analyze the differences between handwritten and generated code, we are likely to
perform a second study that addresses MDA in the contexts of performance, maintainability and other
relevant application aspects. Until then, please share your experiences with us by emailing us at
casestudy@middleware-company.com.

Thank you for reading. We hope this case study was useful to you, and we wish you good luck in your
development!

6 Appendix: Design Patterns Glossary

In this section, we will explain in more detail each of the design patterns used by the teams. This section is
useful for those who may need to brush up on J2EE patterns. It is fairly technical and requires an
understanding of J2EE programming. For more information about these patterns, download our book, EJB
Design Patterns, for free from http://www.theserverside.com/.

6.1.1 Session-Entity Wrapper

When client code (such as JSP code or servlet code) accesses an EJB, it’s important to reduce the number
of network round trips and transactions to a bare minimum. You can achieve this by wrapping entity beans
with a session bean wrapper. The client code calls the session beans, which then delegate to entity beans.
Thus the session beans serve as a network façade and a transactional façade on behalf of the entity beans.
This is also a natural fit, since a session bean models an action while an entity bean models data. Actions
use data.

6.1.2 Primary Key Generation in EJB Components

A primary key is a unique identifier for a database record. Traditionally primary keys have been generated
at the database-level by using database features (such as Oracle’s sequences). This approach is perfectly
valid, however it is not portable across databases. This is problematic for independent software vendors
(ISVs) and other groups that need to support a wide variety of databases.

You can generate primary keys in a portable fashion by using EJB components. There are several
strategies you can use to achieve this. For example, you can use an algorithmic primary key generator to
generate keys in-memory (note that the precision of such primary keys is limited due to limitations in the
Java Virtual Machine). You can also create a database table dedicated to creating primary keys, and
increment a counter that is cached in-memory via EJB components for performance reasons. These
strategies are discussed in more detail in the EJB Design Patterns book or our J2EE Patterns course.

6.1.3 Business Delegate

One of the challenges with EJB development is coordinating a team to be productive. Often times team
members are waiting on each other for code, twiddling their thumbs.

The business delegate design pattern solves this problem. The idea behind business delegates is to create a
layer of plain Java classes that hide EJB API complexity by encapsulating code required to call EJB
components. The client code (in this case, the web layer) calls the business delegates, which then access
EJB components on their behalf. This allows you to “plug in” stub implementations for code that is not yet
developed, keeping team members productive.

Business delegates have other minor benefits as well. They effectively shield your client code from EJB
completely, allowing you to use another technology at a later date if you see fit. They can also cache data
locally, and retry failed transactions in a transparent manner to client code.

http://www.theserverside.com/

MDA PRODUCTIVITY CASE STUDY CASESTUDY@MIDDLEWARE-COMPANY.COM
COPYRIGHT © 2003 THE MIDDLEWARE COMPANY PAGE 17 OF 18

6.1.4 Data Transfer Objects (DTOs)

Data Transfer Objects (DTOs), also known as Value Objects (VOs), are classes that hold data that is
marshaled across tiers. They are useful for aggregating large amounts of data that would normally take
many network roundtrips to retrieve. By using DTOs you can reduce the number of network roundtrips
required to your EJB layer. Rather than calling 10 entity bean getter methods, you would retrieve a single
DTO that contained all 10 fields. Generally speaking, a DTO maps to an entity bean.

6.1.5 Custom Data Transfer Objects

Custom DTOs are a specialization of the generic DTO design pattern. The best way to understand the need
for Custom DTOs is to think about an entity bean that has hundreds of attributes. Most of the time, client
code will only want to retrieve a small fraction of this data from the entity bean. Thus it doesn’t make
sense to populate and marshal a DTO that embodies the complete entity bean. A Custom DTO can
represent a subset of an entity bean, thus solving this problem.

6.1.6 DTO Factory

A typical J2EE application will require a plethora of DTOs. DTOs may be needed for each use-case of the
system, and DTOs may need change as the domain model changes. A DTO Factory is responsible for
creating and consuming DTOs. It can create a DTO and populate it based on a primary key of an entity
bean. It can look up an entity bean, make local calls to retrieve data, populate a DTO, and return that DTO
to a session bean. This saves from having to rewrite this basic population code over and over again in the
session beans. The purpose of the DTO factory is to shield the application from the high velocity of change
DTOs experience. It can increase maintainability, reuse, and even performance.

6.1.7 Service Locator

The Service Locator pattern was invented by John Crupi’s team at Sun Microsystems who wrote the J2EE
Patterns book. It is a Java class with static methods that EJB client code uses to obtain references to EJB
homes via the Java Naming and Directory Interface (JNDI). The Service Locator pattern enhances
performance since it can cache JNDI homes, and reduces the need to write redundant JNDI code in clients.
Client code doesn’t need to know JNDI, deal with EJB exceptions, or narrow references. Think of the
Service Locator pattern as a helper class that contains common JNDI code needed to be written many
times.

6.1.8 Business Interface

One of the best-practices established in EJB development is that an enterprise bean class should not
implement its own remote interface, since a remote interface contains methods that a bean should not
implement, such as those defined in javax.ejb.EJBObject. However, the idea of a class
implementing an interface is a nifty way to enforce compile-time checking that the method signatures for
an implementation match those of an interface, and we would still like to retain this value.

A solution to this is the business interface pattern for EJB components. A business interface contains your
EJB business methods. The remote interface extends this interface, and the enterprise bean class
implements this interface.

6.1.9 JDBC for Reading via Data Access Objects (DAOs)

The JDBC for Reading pattern encourages you to use JDBC to read database data, rather than go through
an entity bean layer. There are many reasons for this, such as inflexibility in the EJB query language, the
ability to hand-tune SQL, and the granularity constraints that you have when performing SQL with entity
beans.

MDA PRODUCTIVITY CASE STUDY CASESTUDY@MIDDLEWARE-COMPANY.COM
COPYRIGHT © 2003 THE MIDDLEWARE COMPANY PAGE 18 OF 18

Data Access Objects (DAOs) are lightweight persistent Java classes that are a valid substitute for entity
beans. In this project, the traditional team used them as an implementation of the JDBC for Reading
pattern, in that they used them purely for reading purposes. They had entity beans as well, for writing
purposes, primarily because entity beans were easily generated using the IDE.

DAOs for reading perform well since they can release database connections quickly. Also DAOs allow
you to perform order-by operations on queries, which you can’t do with entity beans in the current EJB
specification’s query language. This ordering helps in sorting data to be presented in the user interface.

By way of comparison, the MDA team used entity beans to go directly to the database and didn’t use the
“JDBC for reading” pattern or DAOs. They sorted data by pushing them into special Java classes called
Form Beans and then wrote a routine to sort them. Thus, both teams achieved the same result in different
ways.

