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MDA is a broad church covering a number of different approaches to model-driven development. Most 
commonly, people think of models as blueprints that are filled in with code, so MDA is commonly viewed 
as supporting “heavyweight” process-heavy modeling techniques; but MDA can do better than this. 

Agile MDA is based on the notion that code and executable models are operationally the same. Hence, the 
principles of the Agile Alliance—testing first, immediate execution, racing down the chain from analysis to 
implementation in short cycles, for example—can be applied equally to models. An executable model, 
because it is executable, can be constructed, run, tested and modified in short incremental, iterative cycles.  

To reach this happy state, models must be complete enough that they can be executed standing alone. There 
are no “analysis” or “design” models; rather, different models capture independent aspects of the system. 
Models are linked together, rather than transformed, and they are then all mapped to a single combined 
model that is then translated into code according to a single system architecture. This approach to MDA is 
called Agile MDA.  

What is Agile MDA? 
To some, the notion of putting “agile” and “modeling” in the same sentence makes no sense. The modelers 
worry that “agile” is a synonym for “hacker” in its most pejorative sense, while the agilists see lumbering 
heavyweight processes (and quite possibly lumbering heavyweight methodologists) that deliver the wrong 
system late at great expense.  

One reason for the disconnect is the recognition of the verification gap . This gap comes about when we 
write documents that cannot execute. Certainly, we can review them and draw conclusions about their 
correctness, but until we have something that runs we cannot know for a fact that they really do exactly 
what is needed. In addition, in the time it takes to deliver a solution, the market and the technology have 
moved on, making the delivered system, even if it is correct, irrelevant. Worse, some systems are “wicked,” 
in that the existence of a solution changes the (perception of the) problem, which makes a complete and 
detailed specification document somewhat futile.  

Agile methods propose to address these problems by delivering small slices of working code as soon as 
possible. This working functionality is immediately useful to the customer, and it can be interacted with, 
possibly improving understanding of the system that needs to be built. As these delivery cycles can be short 
(a week or two), the systems’ development process is able to adapt to changing conditions and deliver just 
what the customer wants. 

To increase customer involvement, agile processes encourage customer participation even while 
programming, but no one suggests they help write assembly code for it is at too low a level of abstraction. 
Of course, customers aren’t stupid: they certainly could learn assembly code, but they wouldn’t (and 
shouldn’t) want to, because this language is alien to their concerns, involving register allocation and heap 
management, and all sorts of interesting tricks far removed from banking, telephony, a copier, or whatever 
the customer’s application is. 

Java, Smalltalk, and C++ are higher level, but they still call for consideration of concepts of no interest to a 
customer: list structure, distribution strategies, the niceties of remote procedure calls and so on. To 
eliminate the verification gap and enable immediate delivery of fragments of the system, what we need is a 
highly abstract modeling language that can more readily represent the content of interest to the customer, 
and yet is concrete enough to enable a modeler to specify an executable model. Such an executable model 
is at a higher level of language abstraction than Java and Smalltalk, just as Java and Smalltalk are at a 
higher level of abstraction than C or assembly code. 
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Executable models are neither sketches nor blueprints; as their name suggests, executable models run. This 
fact eliminates the verification gap, and allows us to deliver a running system in small increments in direct 
communication with customers. In this sense, executable models act just like code, though they provide the 
ability to interact better with the customer because the language’s higher level of abstraction is closer to the 
customer’s concerns. The executable model is independent of the software platforms that dominate 
development today; thus, in the parlance of MDA, it is a Platform-Independent Model (PIM). 

Building an Executable UML Model 
Executable UML is a profile of UML that defines execution semantics for a carefully selected streamlined 
subset of UML. (See Mellor and Balcer [1] for a definitive description.) The subset is computationally 
complete, which is why an executable UML model can be directly executed. Modeling rules are enforced 
not by convention but by execution: Either a model compiles and runs, or it doesn’t.  

All diagrams (e.g. class diagrams, state diagrams, action specifications) are “projections” or “views” of an 
underlying model. For example, several class diagrams may provide different views of an underlying class 
model.  One such view might show all the subclass relationships but not show associations, while another 
might show associations but not subclassing relationships.  Similarly, state diagrams are views of an 
underlying state model. 

Some kinds of UML models do not support execution, such as use case models. They may be used freely to 
help build the executable UML models, but code generators and virtual machines do not process them. 

The essential components of executable UML are illustrated in Figure 1, which shows a set of classes and 
objects that use state machines to communicate. Each state machine has a set of actions triggered by the 
state changes. The actions execute data access and functional computations, and may also send signals that 
induce further state changes. 

A complete set of actions for creating objects, sending signals to them, accessing data about instances, and 
executing general computations makes UML a computationally complete specification language. Because 
executable UML is computationally complete, it can be used as a PIM to specify any subject matter in the 
system. 
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Figure 1: The primary projections of Executable UML 
 

The difference between an ordinary boring programming language and a UML action language is 
analogous to the difference between assembly code and a programming language. They both specify 
completely the work to be done, but they do so at different levels of language abstraction. Programming 
languages abstract away details of the hardware platform so you can write what needs to be done without 
having to worry about the number of registers on the target machine, the structure of the stack or how 
parameters are passed to functions, etc. Action languages abstract away details of the software platform so 
you can write what needs to be done without worrying about distribution strategies, list structure, remote 
procedure calls and the like. For example, action languages do not concern themselves with the cardinality 
of the data structures, treating everything as a set. It is only when it comes time to transform these 
structures into implementation do we select an appropriate physical data structure. Similarly, with the 
patterns of access to data; we generate only what we need after examining whether a type of access is 
actually used.  

As the existence of standards made programs portable across multiple hardware platforms, so too does the 
existence of an executable UML standard make models portable across multiple software platforms.  
Defining the subset as a standard is a work in progress. 

Executing an Executable Model 
Figure 1 showed the static structure of an executable UML model, but a language is not meaningful unless 
there are well-defined execution semantics. Executable UML has specific, unambiguous rules regarding 
dynamic behavior—that is, rules about how the language executes at run time.  The semantics are stated in 
terms of a set of communicating state machines, the only active elements in an executable UML program. 

Each object and class (potentially) has a state machine that captures the behavior over time of each object 
and class. Every state machine is in exactly one state at a time, and all state machines execute concurrently 
with respect to one another. (Note that the single state chart describing the behavior of the typical object 
generates one state machine, each in its own state, for each object currently in existence.) 

The set of actions triggered by a state transition execute concurrently with respect to one another unless 
otherwise constrained by data or control flow, and these actions may access data of other objects. It is the 
proper task of the modeler to specify the correct sequencing and to ensure object data consistency by 
synchronizing the state machines. 

A state machine synchronizes its behavior with another by sending a signal that is interpreted by the 
receiver’s state machine as an event. On receipt of a signal, a state machine fires a transition and executes a 
set of actions that must run to completion before the next event is processed.  

 

Coding vs. Actions 

Why use an action model rather than just write code? 

The semantics of actions are defined so that data structures can be changed at translation time without 
affecting the definition of the computation—a critical requirement for translatability. Therefore, the 
action semantics allows you to specify behavior without relying on knowledge of the implementation. 
For example, a common approach to finding the total amount of the last ten transactions is to loop 
through the data structure creating a sum as we go. This inextricably links the computation to the data 
structure, but what if it changes? The action semantics casts this example problem instead as: Get the 
last ten transaction amounts, then sum them. The consequence of this small change in view is that it is 
possible to change the storage scheme without affecting the algorithm that merely sums values. 

And the result of that is an executable UML model can be translated to any target. 
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State machines communicate only by signals, and signal order is preserved between sender and receiver 
instance pairs. The rule simply states the desired sequence of activities. When the event causes a transition 
in the receiver, the procedure in the destination state of the receiver executes after the action that sent the 
signal. This captures desired cause and effect in the system’s behavior. It is a wholly separate problem to 
guarantee that signals do not get out of order, links fail, etc., just as it is separate problem to ensure 
sequential execution of instructions in a parallel machine. 

An arbitrary model therefore contains the details necessary to support its execution, verification, and 
validation, independent of implementation. No design details or code need be developed or added for 
model execution, so formal test cases can be executed against the model to verify that requirements have 
been properly addressed. This form of verification can be carried out on each executable model, 
independently of the other models. 

Them’s the rules, but what is really going on is that executable UML is a concurrent specification language. 
Rules about synchronization and object data consistency are simply rules for that language, just as in C++ 
we execute one statement after another and data is accessed one statement at a time. We specify in such a 
concurrent language so that we may translate it onto concurrent, distributed platforms, as well as onto fully 
synchronous, single tasking environments.  

Translating a Model 
Executable UML defines groupings of data and behavior (“classes”), the behavior over time of instances 
(“state charts”), and precise computational behavior (“actions”). The reason for the quotation marks is that 
executable UML does not prescribe implementation. Rather, a “class” in executable UML represents a 
conceptual grouping of data and behavior that may be implemented as a class, or it may be implemented as 
a C struct and a set of associated functions, or as a VHDL1 entity. A “class” doesn’t have to be 
implemented as a class. Consequently executable UML is a software-platform-independent language that 
can be translated into any target. For this reason, we also use the word “translatable” as well as 
“executable.”  

 

Models, Models, Models 

There are at least three meanings of “model,” and each one denotes diverse usages and connotes different 
processes. One denotation for the word “model” is a sketch. We sketch out the shape of a wing on the back 
of a beer mat, show a few lines indicating air flow, and write an equation or two describing how the two 
interact. The sketch is not complete, nor is it intended to be. The purpose of the sketch is to try out an idea. 
The sketch is neither maintained nor delivered.  

Agile exponents are willing to sketch out their classes and use cases, sometimes called “stories,” and 
perhaps even use UML to do it. There’s no fight here: even the most extreme use sketches to outline their 
plans for the code.  

A second denotation for the word is the model as blueprint. The physical model of the airplane in a wind 
tunnel is one example; more commonly, we think of a blueprint as a document describing key properties 
needed to build the real thing: the blueprint is the embodiment of a plan for construction.  

The connotations of a model-as-blueprint cause conflict. The very idea of a “blueprint” evokes images of 
factories and manufacturing, together with uncreative drones. In an environment that is 80% construction 
and 20% design, like manufacturing, it makes sense to view the blueprint as the plan that is predictive of 
the construction work to be done. “Heavyweight” processes have encouraged the idea of model as 
blueprint; the manufacturing analogy is drawn repeatedly in the Software Engineering Institute’s Capability 
Maturity Model (CMM), for example. But we know software is a creative new-economy  thing, not at all 
like old-fashioned manufacturing. To the contrary, software is known for its creative aspects, entailing 
more like 80% design and 20% construction. In this case, developers need to be adaptive rather than 

                                                                 
1 VHDL = VHSIC Hardware Description Language.  VHSIC = Very High Speed Integrated Circuits 
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predictive in their relationship to any model, effectively ruling out the use of models as blueprints. 

The third denotation for the word is the model as an executable .2 The model of the airplane can be 
transformed into the real, physical airplane. The transformation requires other inputs, in this case the metal 
plates, bolts, and screws that make up the body, yet the model is complete in every detail in the one aspect 
of the problem related to the shape-that-flies. When we build an executable UML model, we have 
described the behavior of our system just as surely as we had when we wrote a program in Java. 

Under this interpretation of “model” as an executable, a program in a high-level language such as Java is a 
model too. The Java program can be transformed into the real thing (byte code). The builder of the model, 
the programmer in this case, need not know how a Java compiler works, nor what the compiler does to 
make a program run. Of course, the byte code produced by the compiler is itself a model that can be 
replaced by ones and zeroes, one layer of abstraction removed, and those ones and zeroes in turn define the 
desired behavior of the underlying hardware, yet one more layer of abstraction away. 

Many of the principles of Extreme Programming (XP) and the Agile Alliance involve process and 
customer relationships and their management, not code. As such, the agile process principles for the 
construction of code apply just as well for the construction of executable models. For those XP principles 
that do specifically mention “code” or “software,” executable UML is  code. 

 

Executable UML allows developers to model the underlying semantics of a subject matter without having 
to worry about the number of the processors, data-structure organization, the number of threads, and so 
forth. In other words, just as programming languages conferred independence from the hardware platform, 
executable UML confers independence from the software platform, which makes executable UML models 
portable across multiple development environments.  

At system construction time, the executable UML compiler maps conceptual objects to threads and 
processors. The compiler’s job is to maintain the desired sequencing specified in the application models, 
but it may to choose to distribute objects, further order their behaviors sequentially, even duplicate them 
redundantly, or split them apart, so long as the defined behavior is preserved. 

A program in C++ is complete and executable, but that doesn’t do us much good until it has been 
transformed into some language that can be directly interpreted. We therefore run the program through a 
series of transformations that preserve the semantic content of the program (otherwise there’s an error in 
the compiler) but express it in a language more oriented to implementation. 

The same happens when we build a complete executable model. When we transform a model, tools 
populate the metamodel for the modeling language at hand. To carry our language example above to 
extremes, we could use the text of a C++ program to populate the instances of a model of C++ with classes 
Class, ProtectedMember, StaticMemberFunction and so on. As a result of the next transformation, we 
would have a model of C, in which instances of StaticMemberFunction and ProtectedMember would both 
be cast as ordinary functions, although with different signatures. 

Such transformations may be continued indefinitely until the final, lowest, most grungy metamodel of them 
all. The classes in an (assembly-language) metamodel could be Instruction, Registers, MemoryLocation, 
and so on. The instances in this metamodel contain all the information of all the “higher level” models, but 
at a low level of abstraction.  

An executable UML model compiler weaves together several models, where each model specifies some 
aspect of a system at a high level of abstraction.  The weaving produces a single model that is at a lower 
level of abstraction.  The model compiler then compiles the single model, producing textual code such as 
C++, Java, assembly, and so forth, which is at a yet lower level of abstraction.  A C++ or Java compiler, or 
an assembler, processes the textual code in turn.  Ultimately, this process generates code that runs over 
some virtual machine, such as the Java VM, or that runs directly over the CPU. 

Merging Models Together 
                                                                                                                                                                                                 
2  Martin Fowler has independently arrived at the same categorization. 
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In addition to successive transformation of complete models, models need to be woven together with other 
models to produce a system, as mentioned above. In an elevator system, the elevator model could be 
expressed as an executable model, but it would not solve the building’s problem until it was connected to 
another complete model of the Transport subject matter. When linked together, and translated into code, the 
executable models become systems.  

To effect this combination, we can define a mapping function. (This mapping is generally a merge, rather 
than a refinement that transforms a model from one form to another.) Specifically, we need to establish that 
one kind of thing in one model “corresponds” to another kind of thing in another model. An example is that 
the class Teller and the class Customer in the Bank model each correspond to an instance of a Role in the 
Security model. Another example is that each Account instance in the Bank corresponds to an instance of 
ProtectedResource in Security. Similarly, a subset of Train instances in a control application corresponds to 
instances of Icon in a User Interface domain. (These last two are called “counterparts” or “counterpart 
instances.”) 

These mappings can be between any two kinds of identifiable entity in an executable UML model. For 
example, the state Stopped in the Train Control domain corresponds to the enumerated value Red of the 
attribute Icon.color. This extends to dynamics. A signal in one domain, say, Button(3) pushed in the 
UserInterface, corresponds to a signal in the Train Control domain, TimeToLeaveStation to Train 47. 
Signals may be mapped to function calls and vice versa, and functions can map to changes in attribute 
values.  Figure 2 provides some examples of such mappings.   
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Figure 2: A sketch of a bridge 

 

Mappings are often directed by marks that correlate elements in source and target models. In Mellor and 
Balcer [1] and earlier work, these correlations (mapping functions and marks) are called bridges. 

Once these mappings are defined, we are ready to combine all the models into a single populated 
metamodel from which code can be generated. (These steps can take place at once.) The mechanism 
responsible for compiling is a model compiler, which weaves together the several models according to a 
single set of architectural rules. 

Model Compilers 
A model compiler takes a set of executable UML models and weaves them together according to a 
consistent set of rules. This task involves executing the mapping functions between the various models to 
produce a single, all-encompassing model that includes all the structure, behavior and logic—everything—
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in the system.  Executable UML is the metamodel for the individual models that the compiler weaves 
together.  The metamodel for the single model that the weaving produces is a metamodel of a unified 
system architecture.  The model compiler’s weaving logic is written with respect to these metamodels 
because it does not have foreknowledge of specific models.  The compiler applies this generic logic to 
source models that conform to the executable UML metamodel and produces target models that conform to 
the architecture metamodel. 

Weaving the models together at once addresses the problem of architectural mismatch, a term coined by 
David Garlan to refer to components that do not fit together without the addition of tubes and tubes of glue 
code, the very problem MDA is intended to avoid! A model compiler imposes a single architectural 
structure on the system as a whole.  

The final mapping from this metamodel can be done in several ways. One approach to defining mapping 
functions is to use an archetype. An archetype is a fragment of model access and text manipulation logic 
that states formally how to transform some executable UML into Java, C++, or into some other kind of 
text. Note that the nascent OMG QVT (Query, View, Transformation) work is defining a standard means 
for expressing mappings among metamodels.  Also, the OMG recently issued a Request for Proposal for a 
standard way to express a mapping from a metamodel to text.  Archetypes are one way to address that RFP. 
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Figure 3 A silo of successive transformations  

 

Adding Code Bodies 
Executable models are not exactly the same as code3 because they need to be woven together with 
other models to produce a system. However, because each model is complete in itself, once 
woven, the system is complete.  

                                                                 
3Executable models are, however, similar to code in an aspect-oriented system. 
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An alternative approach to building a system is to copy the structure of a PIM into a platform-specific 
model (PSM) and then add code bodies. (Obviously, these code bodies need to be “protected” so that a 
change in the model or the regeneration of one does not cause the disappearance of the hard-won code.) 
The PSM can also be expressed as a graphical model that can then be manipulated by adding further code 
details or otherwise reorganizing its structure. There may be several transformations, and code may be 
added at each transformation. This has the advantage—it is said—that code is added only at the appropriate 
time, at the appropriate level of abstraction.  

We may also distinguish this type of MDA by its reliance on successive transformation. The typical 
scenario is to define a profile for a language that has a lower degree of abstraction, as represented by the 
ovals in Figure 3. For example, a subset of UML may serve as the “analysis” model that has no knowledge 
of remote or local objects, while another, larger, subset serves as the “design” model which does have 
knowledge of accessibility. This model is then transformed again into a still less abstract language, perhaps 
against a profile of a platform such as CORBA. 

Yet code bodies are inherently dependent on the structure of the model for which the code is intended. For 
example, any code written for a target platform that assumes remote procedure calls  can only be used in an 
environment that uses remote procedure calls, even if the subject matter captured by the model is banking. 
The result of this approach is that models are not universal, but instead form silos that mix the platform and 
the subject matter at hand. This is an architectural mismatch. Agile MDA explicitly addresses this problem 
by treating all models as equal and merging them together at once. 

Obviously, models of this sort cannot be executed. In fact, to be blunt about it, these models are really an 
automation of a heavyweight process. This is not to deprecate that usage—some people have to do it that 
way—but it ain’t agile!  

The Agile MDA approach is to build executable, translatable models, which are complete models linked 
together with others without further intervention or elaboration by a process of translation. 

In Agile MDA, because each executable model is a PIM and the model compiler compiles the models to 
make code, you might ask what happened to the PSM. The PSM is there alright—it’s the code. Code is a 
weaving together of the elements of the PIM and of the required platforms, and it executes too. In Agile 
MDA, there is no need to manipulate the PSM or to visualize it as a model. We go straight to the ultimate 
PSM: the code.  

Summary 
The conflict between the modelers and agile programmers [4] is perceived to be fundamental and large, 
partly because of differing technical focus—“extreme” is an explicit reaction to deliberate processes —and 
partly because of hype. Yet in reality the gap is quite small. Many ideas of the Agile Alliance and XP (such 
as Sustainable Development, Customer on Site, or Estimate to Improve) hold if we simply replace the word 
“code” with “executable model”—enough so that your author became a signatory to the Agile Manifesto in 
good conscience.  

To build a system using Agile MDA, we follow an agile process. We build test cases, write executable 
models, compile the models using a model compiler, run the test cases, and deliver fragments of the system 
to the customer incrementally. This is just the same as “We build test cases, write code, compile the code 
using a language compiler, run the test cases, and deliver fragments of the system to the customer 
incrementally” except that we have replaced one language (code), with another at a higher level of 
abstraction: an executable and translatable model. 

Agile MDA requires the construction of various PIMs using the UML profile called executable UML, and 
the compilation of those models using a model compiler that executes the mapping functions to produce the 
most interesting and useful PSM of them all: the code. 
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